Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 71688

A rule-based approach to stroke lesion analysis from CT brain images


Matešin, Milan; Lončarić Sven; Petravić Damir
A rule-based approach to stroke lesion analysis from CT brain images // Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis / Lončarić, Sven; Babić, Hrvoje (ur.).
Zagreb: Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2001. str. 219-223 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 71688 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A rule-based approach to stroke lesion analysis from CT brain images

Autori
Matešin, Milan ; Lončarić Sven ; Petravić Damir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis / Lončarić, Sven; Babić, Hrvoje - Zagreb : Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2001, 219-223

Skup
2nd International Symposium on Image and Signal Processing and Analysis

Mjesto i datum
Pula, Hrvatska, 19.06.2001. - 21.06.2001

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
image segmentation; rule based; seeded region growing; stroke lesion

Sažetak
This paper presents a method for automatic segmentation and labeling of computed tomography (CT) head images of stroke lesions. The method is composed of three steps. The first step is automatic determination of head symmetry axis, with possibility of manual improvement of result, if necessary. Symmetry axis calculation is based on moments. In the second step the seeded region-growing (SRG) algorithm is used to segment input image into number of regions having uniform brightness. Features of these regions, such as brightness, area, neighborhood and relative position to symmetry axis are used to create facts for a rule-based expert system. Based on created facts and pre-defined rules as input, the rule-based expert system is used in the third step to label regions as background, scull, gray/white matter, CSF and stroke. Experimental results have been conducted and have demonstrated the feasibility and accuracy of the proposed method.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036024

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Damir Petravić (autor)

Avatar Url Sven Lončarić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Matešin, Milan; Lončarić Sven; Petravić Damir
A rule-based approach to stroke lesion analysis from CT brain images // Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis / Lončarić, Sven; Babić, Hrvoje (ur.).
Zagreb: Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2001. str. 219-223 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Matešin, M., Lončarić Sven & Petravić Damir (2001) A rule-based approach to stroke lesion analysis from CT brain images. U: Lončarić, S. & Babić, H. (ur.)Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis.
@article{article, author = {Mate\v{s}in, Milan}, year = {2001}, pages = {219-223}, keywords = {image segmentation, rule based, seeded region growing, stroke lesion}, title = {A rule-based approach to stroke lesion analysis from CT brain images}, keyword = {image segmentation, rule based, seeded region growing, stroke lesion}, publisher = {Sveu\v{c}ili\v{s}ni ra\v{c}unski centar Sveu\v{c}ili\v{s}ta u Zagrebu (Srce)}, publisherplace = {Pula, Hrvatska} }
@article{article, author = {Mate\v{s}in, Milan}, year = {2001}, pages = {219-223}, keywords = {image segmentation, rule based, seeded region growing, stroke lesion}, title = {A rule-based approach to stroke lesion analysis from CT brain images}, keyword = {image segmentation, rule based, seeded region growing, stroke lesion}, publisher = {Sveu\v{c}ili\v{s}ni ra\v{c}unski centar Sveu\v{c}ili\v{s}ta u Zagrebu (Srce)}, publisherplace = {Pula, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font