Pregled bibliografske jedinice broj: 716535
A generalization of Françoise's algorithm for calculating higher order Melnikov functions.
A generalization of Françoise's algorithm for calculating higher order Melnikov functions. // Bulletin des Sciences Mathématiques, 126 (2002), 9; 705-732 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 716535 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A generalization of Françoise's algorithm for calculating higher order Melnikov functions.
Autori
Jebrane, Ahmed ; Mardešić, Pavao ; Pelletier, Michèle
Izvornik
Bulletin des Sciences Mathématiques (0007-4497) 126
(2002), 9;
705-732
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Abelian integral; Melnikov function; Limit cycle; Fuchs system
Sažetak
In [J. Differential Equations 146 (2) (1998) 320–335], Françoise gives an algorithm for calculating the first nonvanishing Melnikov function Mℓ of a small polynomial perturbation of a Hamiltonian vector field and shows that Mℓ is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Françoise's condition is not verified. We generalize Françoise's algorithm to this case and we show that Mℓ belongs to the module above the Abelian integrals. We also establish the linear differential system verified by these Melnikov functions Mℓ(t).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts