Pregled bibliografske jedinice broj: 716524
A note on a generalization of Françoise's algorithm for calculating higher order Melnikov functions
A note on a generalization of Françoise's algorithm for calculating higher order Melnikov functions // Bulletin des Sciences Mathématiques, 128 (2004), 9; 749-760 doi:10.1016/j.bulsci.2004.03.012 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 716524 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A note on a generalization of Françoise's algorithm for calculating higher order Melnikov functions
Autori
Jebrane, Ahmed ; Mardešić, Pavao ; Pelletier, Michèle
Izvornik
Bulletin des Sciences Mathématiques (0007-4497) 128
(2004), 9;
749-760
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Abelian integral; Melnikov function; Limit cycle; Fuchs system
Sažetak
In [J. Differential Equations 146 (2) (1998) 320–335], Françoise gives an algorithm for calculating the first nonvanishing Melnikov function M of a small polynomial perturbation of a Hamiltonian vector field and shows that M is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Françoise’s condition is not verified. We generalize Françoise’s algorithm to this case and we show that M belongs to the C[log t, t, 1/t] module above the Abelian integrals. We also establish the linear differential system verified by these Melnikov functions M(t).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts