Pregled bibliografske jedinice broj: 716012
The Analogue of Theorems Related To Wallace-Simson’s Line in Quasi-Hyperbolic Plane
The Analogue of Theorems Related To Wallace-Simson’s Line in Quasi-Hyperbolic Plane // The 16th International Conference on Geometry and Graphics (ICGG 2014) - Proceedings / Schroecker H.-P., Husty M. (ur.).
Innsbruck: ISGG , 2014, 2014. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 716012 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Analogue of Theorems Related To Wallace-Simson’s Line in Quasi-Hyperbolic Plane
Autori
Sliepčević, Ana ; Božić, Ivana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
The 16th International Conference on Geometry and Graphics (ICGG 2014) - Proceedings
/ Schroecker H.-P., Husty M. - Innsbruck : ISGG , 2014, 2014
Skup
The 16th International Conference on Geometry and Graphics
Mjesto i datum
Innsbruck, Austrija, 04.08.2014. - 08.08.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Quasi-hyperbolic plane; pencil of parabolas; Wallace-Simson line; point A
Sažetak
The quasi-hyperbolic plane is one of nine projective-metric planes where the absolute figure is the ordered triple j1 ; j2 ; F. It is dual to the pseudo-Euclidean plane. It is known for the fact that a pencil of parabolas, in the Euclidean and pseudo-Euclidean plane, can be set according to lines a ; b ; c. The focus points of all parabolas in the pencil lie on the circle circumscribed to the triangle given by lines a ; b ; c. The connection between the pencil of parabolas, Wallace-Simson lines and Steiner deltoid curve are studied and proved in [2]. Analogues theorems are valid in the pseudo- Euclidean plane. In this paper the dual theorems will be proved in quasi-hyperbolic plane.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Građevinski fakultet, Zagreb,
Tehničko veleučilište u Zagrebu