Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 715753

Battery state-of-charge and parameter estimation algorithm based on Kalman filter


Dragicevic, Tomislav; Sučić, Stjepan; Guerrero, Joseph Maria J.M.
Battery state-of-charge and parameter estimation algorithm based on Kalman filter // EUROCON, 2013 IEEE
Cavtat, Hrvatska, 2013. str. 1519-1525 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 715753 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Battery state-of-charge and parameter estimation algorithm based on Kalman filter

Autori
Dragicevic, Tomislav ; Sučić, Stjepan ; Guerrero, Joseph Maria J.M.

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
EUROCON, 2013 IEEE / - , 2013, 1519-1525

Skup
Energy Conference (ENERGYCON), 2014 IEEE International

Mjesto i datum
Cavtat, Hrvatska, 13.05.2014. - 16.05.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Lead acid battery; Kalman filter; estimation; state-of-charge; battery management system
(Lead acid battery; Kalman filter; estimation; state-of-charge; battery management system.)

Sažetak
Electrochemical battery is the most widely used energy storage technology, finding its application in various devices ranging from low power consumer electronics to utility back-up power. All types of batteries show highly non-linear behaviour in terms of dependence of internal parameters on operating conditions, momentary replenishment and a number of past charge/discharge cycles. A good indicator for the quality of overall customer service in any battery based application is the availability and reliability of these informations, as they point out important runtime variables such as the actual state of charge (SOC) and state of health (SOH). Therefore, a modern battery management systems (BMSs) should incorporate functions that accommodate real time tracking of these non- linearities. For that purpose, Kalman filter based algorithms emerged as a convenient solution due to their ability to adapt the underlying battery model on-line according to internal processes and measurements. This paper proposes an enhancement of previously proposed algorithms for estimation of the battery SOC and internal parameters. The validity of the algorithm is confirmed through the simulation on experimental data captured from the lead acid battery stack installed in the real-world remote telecommunication station.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Tomislav Dragičević (autor)

Citiraj ovu publikaciju:

Dragicevic, Tomislav; Sučić, Stjepan; Guerrero, Joseph Maria J.M.
Battery state-of-charge and parameter estimation algorithm based on Kalman filter // EUROCON, 2013 IEEE
Cavtat, Hrvatska, 2013. str. 1519-1525 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Dragicevic, T., Sučić, S. & Guerrero, J. (2013) Battery state-of-charge and parameter estimation algorithm based on Kalman filter. U: EUROCON, 2013 IEEE.
@article{article, author = {Dragicevic, Tomislav and Su\v{c}i\'{c}, Stjepan and Guerrero, Joseph Maria J.M.}, year = {2013}, pages = {1519-1525}, keywords = {Lead acid battery, Kalman filter, estimation, state-of-charge, battery management system}, title = {Battery state-of-charge and parameter estimation algorithm based on Kalman filter}, keyword = {Lead acid battery, Kalman filter, estimation, state-of-charge, battery management system}, publisherplace = {Cavtat, Hrvatska} }
@article{article, author = {Dragicevic, Tomislav and Su\v{c}i\'{c}, Stjepan and Guerrero, Joseph Maria J.M.}, year = {2013}, pages = {1519-1525}, keywords = {Lead acid battery, Kalman filter, estimation, state-of-charge, battery management system.}, title = {Battery state-of-charge and parameter estimation algorithm based on Kalman filter}, keyword = {Lead acid battery, Kalman filter, estimation, state-of-charge, battery management system.}, publisherplace = {Cavtat, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font