Pregled bibliografske jedinice broj: 715577
Redundancy-Free Integration of Rotational Quaternions in Minimal Form
Redundancy-Free Integration of Rotational Quaternions in Minimal Form // Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (DETC 2014)
Buffalo (NY): American Society of Mechanical Engineers (ASME), 2014. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 715577 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Redundancy-Free Integration of Rotational Quaternions in Minimal Form
Autori
Terze, Zdravko ; Mueller, Andreas ; Zlatar, Dario
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (DETC 2014)
/ - Buffalo (NY) : American Society of Mechanical Engineers (ASME), 2014
Skup
The ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE 2014)
Mjesto i datum
Buffalo (NY), Sjedinjene Američke Države, 17.08.2014. - 20.08.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Time integration schemes; spatial rotations; rotational quaternions; Lie-groups; special orthogonal group SO(3); unit quaternion group; symplectic group Sp(1)
Sažetak
Redundancy-free computational procedure for solving dynamics of rigid body by using quaternions as the rotational kinematic parameters will be presented in the paper. On the contrary to the standard algorithm that is based on redundant DAE-formulation of rotational dynamics of rigid body that includes algebraic equation of quaternions' unit-length that has to be solved during marching-in-time, the proposed method will be based on the integration of a local rotational vector in the minimal form at the Lie-algebra level of the SO(3) rotational group during every integration step. After local rotational vector for the current step is determined by using standard (possibly higher-order) integration ODE routine, the rotational integration point is projected to Sp(1) quaternion-group via pertinent exponential map. The result of the procedure is redundancy-free integration algorithm for rigid body rotational motion based on the rotational quaternions that allows for straightforward minimal-form-ODE integration of the rotational dynamics.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Strojarstvo, Zrakoplovstvo, raketna i svemirska tehnika
POVEZANOST RADA
Projekti:
120-1201829-1664 - Numeričke simulacijske procedure dinamike slijetanja elastičnog zrakoplova (Terze, Zdravko, MZOS ) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb