Pregled bibliografske jedinice broj: 715095
Hidden Markov Model in Spectro-Temporal Tracking of Asthmatic Wheezing in Respiratory Sounds
Hidden Markov Model in Spectro-Temporal Tracking of Asthmatic Wheezing in Respiratory Sounds // Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering / Lacković, Igor ; Vasić, Darko (ur.).
Heidelberg: Springer, 2014. str. 5-8 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 715095 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Hidden Markov Model in Spectro-Temporal Tracking of Asthmatic Wheezing in Respiratory Sounds
Autori
Oletić, Dinko ; Škrapec, Mateja ; Bilas, Vedran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering
/ Lacković, Igor ; Vasić, Darko - Heidelberg : Springer, 2014, 5-8
Skup
6th European Conference of the International Federation for Medical and Biological Engineering
Mjesto i datum
Dubrovnik, Hrvatska, 07.09.2014. - 11.09.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
respiratory sounds; asthmatic wheezing; frequency line tracking; hidden Markov model; m-health
Sažetak
Interval of respiratory cycle occupied by asthmatic wheezing can be an indicator of severity of asthmatic attack. This information can be estimated from respiratory sounds spectrogram, by performing spectro-temporal tracking of duration of frequency lines of asthmatic wheezing. In this paper we model wheezing using hidden Markov model, considering its instantaneous frequency as hidden state. We estimate the hidden state using Forward- backward and Viterbi algorithm from a series of observations drawn from STFT. We present a simplified model focusing on tracking of a single frequency line (monophonic wheezing). In comparison to a referent wheeze tracking algorithm, average results show 10 % increase in tracking accuracy, and a significant gain in robustness (same tracking error at 10 dB lower SNR). Execution speed is analysed in order to evaluate suitability of the method for m-health application of asthmatic patients monitoring. Real-time operation was verified for Forward- backward algorithm on an Android smartphone.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb