Pregled bibliografske jedinice broj: 714847
A Rapidly Convergent Algorithm For The Solution Of Navier-Stokes Equations
A Rapidly Convergent Algorithm For The Solution Of Navier-Stokes Equations // Proceedings of the jointly organized 11th. World Congress on Computational Mechanics - WCCM XI, 5th. European Congress on Computational Mechanics - ECCM V, 6th. European Congress on Computational Fluid Dynamics - ECFD VI, Barcelona, Spain, July 20 – 25, 2014 / E. Oñate, J. Oliver, A. Huerta (ur.).
Barcelona: Artes Gráficas Torres S.A., Huelva 9, 08940 Cornellà de Llobregat, Spain, 2014. str. 5115-5121 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 714847 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Rapidly Convergent Algorithm For The Solution Of Navier-Stokes Equations
Autori
Krizmanić, Severino ; Virag, Zdravko ; Šavar, Mario
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the jointly organized 11th. World Congress on Computational Mechanics - WCCM XI, 5th. European Congress on Computational Mechanics - ECCM V, 6th. European Congress on Computational Fluid Dynamics - ECFD VI, Barcelona, Spain, July 20 – 25, 2014
/ E. Oñate, J. Oliver, A. Huerta - Barcelona : Artes Gráficas Torres S.A., Huelva 9, 08940 Cornellà de Llobregat, Spain, 2014, 5115-5121
ISBN
978-84-942844-7-2
Skup
11th. World Congress on Computational Mechanics - WCCM XI, 5th. European Congress on Computational Mechanics - ECCM V, 6th. European Congress on Computational Fluid Dynamics - ECFD VI
Mjesto i datum
Barcelona, Španjolska, 20.07.2014. - 25.07.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Computational Fluid Dynamics; Finite Volume Method; Unstructured Grid; Pressure-Velocity Coupling; Segregated Method; Method Of Loops
Sažetak
In this paper a novel pressure-velocity coupling algorithm for the solution of the Navier-Stokes equations by finite volume method on collocated grids is presented. In order to achieve pressure-velocity coupling, SIMPLE-like methods generally combine an approximate divergence of the pressure gradient field obtained from the momentum equations and the continuity equation. In formulations on collocated grids, the working variables are cell velocity components and cell pressure, while in order to suppress checker-board solutions, the cell face mass fluxes used in continuity equation are obtained by using special interpolations. The convergence rate of SIMPLE-like methods strongly rely on under-relaxation factor values, especially in segregated algorithm formulations. Compared to SIMPLE-like methods, novel pressure-velocity coupling method presented in this paper has several fundamental differences. Novel method uses cell face mass fluxes as working variables and irrotationality condition for the pressure gradient, while the cell velocity components are obtained by using the continuity equation. The resulting new pressure-velocity coupling algorithm approaches the final solution in an segregated iterative procedure by correcting cell face mass fluxes until the pressure gradient field becomes irrotational. The mass fluxes corrections applied in the new algorithm preserve the solution of the continuity equation, so that continuity equation has to be solved only once, at the beginning of the iteration procedure. Due the presented properties, the new algorithm ''naturally'' bypasses the checker-board problem in the collocated variable arrangement and doesn't require a stabilization procedure in the iterative solution process. The new pressure-velocity coupling algorithm was coded into own computer program and compared with the SIMPLE algorithm implemented within a commercial software package. The conducted tests covered 2D and 3D incompressible, inviscid and laminar flow problems having various boundary conditions and grid sizes and steady free convection problems solved using Boussinesq approximation. In conducted tests, the convergence rate of the new algorithm showed to be independent on grid size. In strict comparisons performed, both algorithms used same differencing scheme and identical grids. The new pressure-velocity algorithm shows a significantly higher convergence rate and CPU time efficiency.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
120-0000000-3300 - Hidrodinamika cijevnih mreža (Šavar, Mario, MZOS ) ( CroRIS)
120-1201760-1758 - Metode računalne dinamike fluida (Virag, Zdravko, MZOS ) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb