Pregled bibliografske jedinice broj: 712979
Object‐Based image analysis for detecting indicators of mine presence to support suspected hazardous area re‐delineation
Object‐Based image analysis for detecting indicators of mine presence to support suspected hazardous area re‐delineation // GEOBIA 2014, Advancements, trends and challenges / Gitas, Ioannis ; Mallinis, Giorgios ; Patias, Petros ; Stathakis, Dimitris ; Zalidis, Georgios (ur.).
Solun: Aristotle University of Thessaloniki, 2014. str. 525-530 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 712979 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Object‐Based image analysis for detecting indicators of mine presence to support suspected hazardous area re‐delineation
Autori
Vanhuysse, Sabine ; Hölbling, Daniel ; Friedl, Barbara ; Hanson, Emilie ; Krtalić, Andrija ; Hagenlocher, Michael ; Racetin, Ivan ; Wolff, Eléonore
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
GEOBIA 2014, Advancements, trends and challenges
/ Gitas, Ioannis ; Mallinis, Giorgios ; Patias, Petros ; Stathakis, Dimitris ; Zalidis, Georgios - Solun : Aristotle University of Thessaloniki, 2014, 525-530
Skup
GEOBIA 2014, 5th Geographic Object-Based Image Analysis Conference
Mjesto i datum
Solun, Grčka, 21.05.2014. - 24.05.2014
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Feature extraction ; Humanitarian Demining ; Image processing ; Remote Sensing
Sažetak
In the framework of Mine Action, the extent of Suspected Hazardous Areas (SHAs) is often overestimated. This study investigates the potential of Object‐Based Image Analysis (OBIA) for extracting Indicators of Mine Presence (IMP) to support a more precise delineation of SHAs, with the aim of ensuring an optimal use of demining resources. The study area is situated in the Svilaja mountain range in Croatia. Using 3K colour aerial photographs, we implemented two approaches for the extraction of dry stone walls located in an area that displays traces of military activities. The first approach uses object‐based class modelling, which describes an iterative process of segmentation and classification. The second approach implements supervised learning techniques based on advanced statistical classification methods, i.e. Support Vector Machines, Random Forests and Recursive Partitioning. The results are compared, the strengths and limitations of both approaches are discussed, and perspectives for further improvements are considered.
Izvorni jezik
Engleski
Znanstvena područja
Geologija, Geodezija
POVEZANOST RADA
Ustanove:
Geodetski fakultet, Zagreb,
Fakultet građevinarstva, arhitekture i geodezije, Split