Pregled bibliografske jedinice broj: 712272
Micromechanical Failure Modelling of Composite Materials Using HFGMC
Micromechanical Failure Modelling of Composite Materials Using HFGMC // WCCM XI - ECCM V - ECFD VI Proceedings / Eugenio Onate, Xavier Oliver and Antonio Huerta (ur.).
Barcelona: International Center for Numerical Methods in Engineering (CIMNE), 2014. str. 3715-3726 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 712272 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Micromechanical Failure Modelling of Composite Materials Using HFGMC
Autori
Ivančević, Darko ; Smojver, Ivica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
WCCM XI - ECCM V - ECFD VI Proceedings
/ Eugenio Onate, Xavier Oliver and Antonio Huerta - Barcelona : International Center for Numerical Methods in Engineering (CIMNE), 2014, 3715-3726
Skup
11th World Congress on Computational Mechanics, 5th European Conference on Computational Mechanics and 6th European Conference on Computational Fluid Dynamics (WCCM XI –ECCM V –ECFD VI)
Mjesto i datum
Barcelona, Španjolska, 20.07.2014. - 25.07.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Micromechanics; damage modelling; multiscale analysis; composite structures
Sažetak
In order to improve the failure analysis of complex composite structures, a two-scale damage prediction procedure has been developed. The methodology is based on the High Fidelity Generalized Method of Cells (HFGMC) model which belongs to a group of computationally efficient semi-analytical micromechanical models. The methodology has been developed with the aim of modelling high velocity impact damage on aeronautical structures using Abaqus/Explicit to perform computations at the structural level. The link between the finite element macro-level analysis and the micromechanical model has been achieved with the user material subroutine VUMAT, which for each material point performs micromechanical calculations based on the applied macroscopic strain given by the FE analysis. As a result, failure processes of complex composite structures have been modelled using micromechanical principles. Several constituent based failure initiation criteria have been implemented in the methodology. A complex multiaxial damage model has been included in the calculations. The results of the micromechanical damage model agree well with ply-based calculation of the Puck failure model. The procedure has been tested on a numerical example in which a soft-body impactor impacts a GFRP plate.
Izvorni jezik
Engleski
Znanstvena područja
Zrakoplovstvo, raketna i svemirska tehnika
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb