Pregled bibliografske jedinice broj: 712005
Fractal dimensions of oscillatory integrals
Fractal dimensions of oscillatory integrals // The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications
Madrid, Španjolska, 2014. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 712005 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal dimensions of oscillatory integrals
Autori
Rolin, Jean-Philippe ; Vlah, Domagoj ; Županović, Vesna
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications
Mjesto i datum
Madrid, Španjolska, 07.07.2014. - 11.07.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
singularity theory; oscillatory integrals; Fresnel integrals; box dimension
Sažetak
It is known that the asymptotics of oscillatory integrals has been related to singularities of the phase function. Abelian integrals and Fresnel integrals are well known classes of oscillatory integrals. Motivated by geometrical interpretation of Fresnel integrals by a spiral called the clothoid, we continue investigation concerning geometrical approach to oscillatory integrals. Using the point of view of fractal geometry, we consider oscillatory integrals depending on one parameter $t$. Oscillatority is measured by the box dimension of the plane curve parameterized by $x(t)$ and $y(t)$ that are the real and imaginary part of the integral, respectively. Also, the oscillatory dimension is defined as the box dimension of the graph $X(\tau) = x(1/\tau)$, near $\tau=0$, where $x(t)$ for $t>0$ is the graph of the real part of the integral. Analogously for $y(t)$ and the imaginary part of the integral. We investigate the connection between these dimensions and asymptotics of the integral.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb