Pregled bibliografske jedinice broj: 712002
Fractal properties of oscillatory solutions of a class of ordinary differential equations
Fractal properties of oscillatory solutions of a class of ordinary differential equations // 8th Conference on Applied Mathematics and Scientific Computing, ApplMath13
Šibenik, Hrvatska, 2013. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 712002 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal properties of oscillatory solutions of a class of ordinary differential equations
Autori
Korkut, Luka ; Vlah, Domagoj ; Žubrinić, Darko ; Županović, Vesna
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
8th Conference on Applied Mathematics and Scientific Computing, ApplMath13
Mjesto i datum
Šibenik, Hrvatska, 10.06.2013. - 14.06.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
box dimension; oscillatory dimension; phase dimension; Bessel equation; wavy spiral
Sažetak
The fractal oscillatority of solutions $x=x(t)$ of ordinary differential equations at $t=\infty$ is measured by \emph{;oscillatory}; and \emph{;phase dimensions}; defined through the box dimension. Oscillatory and phase dimensions are defined as box dimensions of the graph of $X(\tau)=x(1/\tau)$ near $\tau=0$ and trajectory $(x, \dot{;x};)$ in $\R^2$, respectively, assuming that $(x, \dot{;x};)$ is a spiral converging to the origin. The box dimension of a plane curve measures the accumulation of a curve near a point, which is in particular interesting for non-rectifiable curves. The oscillatory dimension of solutions of Bessel equation has been determined by Pa\v si\'c and Tanaka (2011). Here, we compute the phase dimension od solutions of a class of ordinary differential equations, including Bessel equation. The phase dimension of solutions of Bessel equation has been computed to be equal to $4/3$. We also compute the phase dimension of a class of $(\alpha, 1)$-chirp-like functions, related to Bessel equation, to be equal to $2/(1+\alpha)$. We determined the box dimension of a specific type of spirals that we called \emph{;wavy spirals};, which are converging to the origin, but not with a nonincreasing radius function.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb