Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 711957

Fractal properties of generalized Bessel functions


Korkut, Luka; Vlah, Domagoj; Županović, Vesna
Fractal properties of generalized Bessel functions // Workshop on Dynamical Systems and Applications, Basque Center for Applied Mathematics
Bilbao, Španjolska, 2013. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 711957 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fractal properties of generalized Bessel functions

Autori
Korkut, Luka ; Vlah, Domagoj ; Županović, Vesna

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
Workshop on Dynamical Systems and Applications, Basque Center for Applied Mathematics

Mjesto i datum
Bilbao, Španjolska, 10.12.2013. - 11.12.2013

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
box dimension; oscillatory dimension; phase dimension; Bessel equation

Sažetak
The fractal oscillatority of solutions $x=x(t)$ of ordinary differential equations at $t=\infty$ is measured by \emph{; ; oscillatory}; ; and \emph{; ; phase dimensions}; ; defined through the box dimension. Oscillatory and phase dimensions are defined as box dimensions of the graph of $X(\tau)=x(1/\tau)$ near $\tau=0$ and trajectory $(x, \dot{; ; x}; ; )$ in $\R^2$, respectively, assuming that $(x, \dot{; ; x}; ; )$ is a spiral converging to the origin. The box dimension of a plane curve measures the accumulation of a curve near a point, which is in particular interesting for non-rectifiable curves. The oscillatory dimension of solutions of Bessel equation has been determined by Pa\v si\'c and Tanaka (2011). Here, we compute the phase dimension of solutions of a class of ordinary differential equations, including Bessel equation. These solutions we call generalized Bessel functions. The phase dimension of Bessel functions is computed to be equal to $4/3$. We relate these results to the result from \v Zubrini\'c and \v Zupanovi\'c (2008) about the box dimension of spiral trajectories of planar vector fields, depending on the asymptotic behavior of iterates of the Poincar\'{; ; e}; ; map. They applied it to the Hopf bifurcation and Li\'{; ; e}; ; nard systems. Also, they obtained all possible values of box dimensions of spiral trajectories around a weak focus, associated with polynomial vector fields. Computation of the phase dimension of generalized Bessel functions use asymptotic expansions of Bessel functions. Due to a very large number of terms, we have to employ methods of computer algebra.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Domagoj Vlah (autor)

Avatar Url Vesna Županović (autor)

Avatar Url Luka Korkut (autor)

Citiraj ovu publikaciju:

Korkut, Luka; Vlah, Domagoj; Županović, Vesna
Fractal properties of generalized Bessel functions // Workshop on Dynamical Systems and Applications, Basque Center for Applied Mathematics
Bilbao, Španjolska, 2013. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Korkut, L., Vlah, D. & Županović, V. (2013) Fractal properties of generalized Bessel functions. U: Workshop on Dynamical Systems and Applications, Basque Center for Applied Mathematics.
@article{article, author = {Korkut, Luka and Vlah, Domagoj and \v{Z}upanovi\'{c}, Vesna}, year = {2013}, keywords = {box dimension, oscillatory dimension, phase dimension, Bessel equation}, title = {Fractal properties of generalized Bessel functions}, keyword = {box dimension, oscillatory dimension, phase dimension, Bessel equation}, publisherplace = {Bilbao, \v{S}panjolska} }
@article{article, author = {Korkut, Luka and Vlah, Domagoj and \v{Z}upanovi\'{c}, Vesna}, year = {2013}, keywords = {box dimension, oscillatory dimension, phase dimension, Bessel equation}, title = {Fractal properties of generalized Bessel functions}, keyword = {box dimension, oscillatory dimension, phase dimension, Bessel equation}, publisherplace = {Bilbao, \v{S}panjolska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font