Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 711762

Back up your Stance: Recognizing Arguments in Online Discussions


Boltužić, Filip; Šnajder, Jan
Back up your Stance: Recognizing Arguments in Online Discussions // Proceedings of the First Workshop on Argumentation Mining (ArgMining 2014), Association for Computational Linguistics
Baltimore (MD): Association for Computational Linguistics (ACL), 2014. str. 49-58 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 711762 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Back up your Stance: Recognizing Arguments in Online Discussions

Autori
Boltužić, Filip ; Šnajder, Jan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the First Workshop on Argumentation Mining (ArgMining 2014), Association for Computational Linguistics / - Baltimore (MD) : Association for Computational Linguistics (ACL), 2014, 49-58

Skup
The First Workshop on Argumentation Mining (ArgMining 2014)

Mjesto i datum
Baltimore (MD), Sjedinjene Američke Države, 26.06.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Argumentation mining ; argument recognition ; online discussions ; support vector machines

Sažetak
In online discussions, users often back up their stance with arguments. Their arguments are often vague, implicit, and poorly worded, yet they provide valuable insights into reasons underpinning users’ opinions. In this paper, we make a first step towards argument-based opinion mining from on-line discussions and introduce a new task of argument recognition. We match user- created comments to a set of predefined topic- based arguments, which can be either attacked or supported in the comment. We present a manually- annotated corpus for argument recognition in online discussions. We describe a supervised model based on comment-argument similarity and entailment features. Depending on problem formulation, model performance ranges from 70.5% to 81.8% F1-score, and decreases only marginally when applied to an unseen topic.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Jan Šnajder (autor)

Citiraj ovu publikaciju:

Boltužić, Filip; Šnajder, Jan
Back up your Stance: Recognizing Arguments in Online Discussions // Proceedings of the First Workshop on Argumentation Mining (ArgMining 2014), Association for Computational Linguistics
Baltimore (MD): Association for Computational Linguistics (ACL), 2014. str. 49-58 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Boltužić, F. & Šnajder, J. (2014) Back up your Stance: Recognizing Arguments in Online Discussions. U: Proceedings of the First Workshop on Argumentation Mining (ArgMining 2014), Association for Computational Linguistics.
@article{article, author = {Boltu\v{z}i\'{c}, Filip and \v{S}najder, Jan}, year = {2014}, pages = {49-58}, keywords = {Argumentation mining, argument recognition, online discussions, support vector machines}, title = {Back up your Stance: Recognizing Arguments in Online Discussions}, keyword = {Argumentation mining, argument recognition, online discussions, support vector machines}, publisher = {Association for Computational Linguistics (ACL)}, publisherplace = {Baltimore (MD), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Boltu\v{z}i\'{c}, Filip and \v{S}najder, Jan}, year = {2014}, pages = {49-58}, keywords = {Argumentation mining, argument recognition, online discussions, support vector machines}, title = {Back up your Stance: Recognizing Arguments in Online Discussions}, keyword = {Argumentation mining, argument recognition, online discussions, support vector machines}, publisher = {Association for Computational Linguistics (ACL)}, publisherplace = {Baltimore (MD), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }




Contrast
Increase Font
Decrease Font
Dyslexic Font