Pregled bibliografske jedinice broj: 711762
Back up your Stance: Recognizing Arguments in Online Discussions
Back up your Stance: Recognizing Arguments in Online Discussions // Proceedings of the First Workshop on Argumentation Mining (ArgMining 2014), Association for Computational Linguistics
Baltimore (MD): Association for Computational Linguistics (ACL), 2014. str. 49-58 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 711762 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Back up your Stance: Recognizing Arguments in Online Discussions
Autori
Boltužić, Filip ; Šnajder, Jan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the First Workshop on Argumentation Mining (ArgMining 2014), Association for Computational Linguistics
/ - Baltimore (MD) : Association for Computational Linguistics (ACL), 2014, 49-58
Skup
The First Workshop on Argumentation Mining (ArgMining 2014)
Mjesto i datum
Baltimore (MD), Sjedinjene Američke Države, 26.06.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Argumentation mining ; argument recognition ; online discussions ; support vector machines
Sažetak
In online discussions, users often back up their stance with arguments. Their arguments are often vague, implicit, and poorly worded, yet they provide valuable insights into reasons underpinning users’ opinions. In this paper, we make a first step towards argument-based opinion mining from on-line discussions and introduce a new task of argument recognition. We match user- created comments to a set of predefined topic- based arguments, which can be either attacked or supported in the comment. We present a manually- annotated corpus for argument recognition in online discussions. We describe a supervised model based on comment-argument similarity and entailment features. Depending on problem formulation, model performance ranges from 70.5% to 81.8% F1-score, and decreases only marginally when applied to an unseen topic.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Jan Šnajder
(autor)