Pregled bibliografske jedinice broj: 711760
HiEve: A Corpus for Extracting Event Hierarchies from News Stories
HiEve: A Corpus for Extracting Event Hierarchies from News Stories // Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)
Reykjavík: European Language Resources Association (ELRA), 2014. str. 3678-3683 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 711760 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
HiEve: A Corpus for Extracting Event Hierarchies from News Stories
Autori
Glavaš, Goran ; Šnajder, Jan ; Moens ; Marie-Francine Moens ; Kordjamshidi, Parisa
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)
/ - Reykjavík : European Language Resources Association (ELRA), 2014, 3678-3683
Skup
The Ninth International Conference on Language Resources and Evaluation (LREC'14)
Mjesto i datum
Reykjavík, Island, 26.05.2014. - 31.05.2014
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Event hierarchies; spatiotemporal containment; relation extraction
Sažetak
In news stories, event mentions denote real-world events of different spatial and temporal granularity. Narratives in news stories typically describe some real-world event of coarse spatial and temporal granularity along with its subevents. In this work, we present HiEve, a corpus for recognizing relations of spatiotemporal containment between events. In HiEve, the narratives are represented as hierarchies of events based on relations of spatiotemporal containment (i.e., superevent-subevent relations). We describe the process of manual annotation of HiEve. Furthermore, we build a supervised classifier for recognizing spatiotemporal containment between events to serve as a baseline for future research. Preliminary experimental results are encouraging, with classifier performance reaching 58% F1-score, only 11% less than the inter-annotator agreement.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb