Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 711755

Event Graphs for Information Retrieval and Multi-Document Summarization


Glavaš, Goran; Šnajder, Jan
Event Graphs for Information Retrieval and Multi-Document Summarization // Expert systems with applications, 41 (2014), 15; 6904-6916 doi:10.1016/j.eswa.2014.04.004 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 711755 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Event Graphs for Information Retrieval and Multi-Document Summarization

Autori
Glavaš, Goran ; Šnajder, Jan

Izvornik
Expert systems with applications (0957-4174) 41 (2014), 15; 6904-6916

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
event extraction; information extraction; information retrieval; multi-document summarization; natural language processing

Sažetak
With the number of documents describing real-world events and event-oriented information needs rapidly growing on a daily basis, the need for efficient retrieval and concise presentation of event-related information is becoming apparent. Nonetheless, the majority of information retrieval and text summarization methods rely on shallow document representations that do not account for the semantics of events. In this article, we present event graphs, a novel event-based document representation model that filters and structures the information about events described in text. To construct the event graphs, we combine machine learning and rule-based models to extract sentence-level event mentions and determine the temporal relations between them. Building on event graphs, we present novel models for information retrieval and multi-document summarization. The information retrieval model measures the similarity between queries and documents by computing graph kernels over event graphs. The extractive multi-document summarization model selects sentences based on the relevance of the individual event mentions and the temporal structure of events. Experimental evaluation shows that our retrieval model significantly outperforms well-established retrieval models on event-oriented test collections, while the summarization model outperforms competitive models from shared multi-document summarization tasks.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Jan Šnajder (autor)

Avatar Url Goran Glavaš (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Glavaš, Goran; Šnajder, Jan
Event Graphs for Information Retrieval and Multi-Document Summarization // Expert systems with applications, 41 (2014), 15; 6904-6916 doi:10.1016/j.eswa.2014.04.004 (međunarodna recenzija, članak, znanstveni)
Glavaš, G. & Šnajder, J. (2014) Event Graphs for Information Retrieval and Multi-Document Summarization. Expert systems with applications, 41 (15), 6904-6916 doi:10.1016/j.eswa.2014.04.004.
@article{article, author = {Glava\v{s}, Goran and \v{S}najder, Jan}, year = {2014}, pages = {6904-6916}, DOI = {10.1016/j.eswa.2014.04.004}, keywords = {event extraction, information extraction, information retrieval, multi-document summarization, natural language processing}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2014.04.004}, volume = {41}, number = {15}, issn = {0957-4174}, title = {Event Graphs for Information Retrieval and Multi-Document Summarization}, keyword = {event extraction, information extraction, information retrieval, multi-document summarization, natural language processing} }
@article{article, author = {Glava\v{s}, Goran and \v{S}najder, Jan}, year = {2014}, pages = {6904-6916}, DOI = {10.1016/j.eswa.2014.04.004}, keywords = {event extraction, information extraction, information retrieval, multi-document summarization, natural language processing}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2014.04.004}, volume = {41}, number = {15}, issn = {0957-4174}, title = {Event Graphs for Information Retrieval and Multi-Document Summarization}, keyword = {event extraction, information extraction, information retrieval, multi-document summarization, natural language processing} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font