Pregled bibliografske jedinice broj: 711464
J_1 convergence for partial sum processes with a reduced number of jumps
J_1 convergence for partial sum processes with a reduced number of jumps // Probability and Mathematical Statistics-Poland, 35 (2015), 1; 107-128 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 711464 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
J_1 convergence for partial sum processes with a reduced number of jumps
Autori
Krizmanić, Danijel
Izvornik
Probability and Mathematical Statistics-Poland (0208-4147) 35
(2015), 1;
107-128
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
functional limit theorem; partial sum process; regular variation; Skorohod J_1 topology; Levy process; weak dependence; mixing
Sažetak
Various functional limit theorems for partial sum processes of strictly stationary sequences of regularly varying random variables in the space of cadlag functions D[0, 1] with one of the Skorohod topologies have already been obtained. The mostly used Skorohod J_1 topology is inappropriate when clustering of large values of the partial sum processes occurs. When all extremes within each cluster of high-threshold excesses do not have the same sign, Skorohod M_1 topology also becomes inappropriate. In this paper we alter the definition of the partial sum process in order to shrink all extremes within each cluster to a single one, which allow us to obtain the functional J_1 convergence. We also show that this result can be applied to some standard time series models, including the GARCH(1, 1) process and its squares, the stochastic volatility models and m- dependent sequences.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Danijel Krizmanić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet