Pregled bibliografske jedinice broj: 711443
Fractal analysis of Hopf bifurcation for maps
Fractal analysis of Hopf bifurcation for maps // 7th Conference on Applied Mathematics and Scientific Computing
Trogir, Hrvatska, 2011. (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 711443 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal analysis of Hopf bifurcation for maps
Autori
Horvat Dmitrović, Lana
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
7th Conference on Applied Mathematics and Scientific Computing
Mjesto i datum
Trogir, Hrvatska, 13.06.2011. - 17.06.2011
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
box dimension; nonhyperbolic fixed point; bifurcation; center manifold; Neimark-Sacker bifurcation
Sažetak
In this paper we show how a change of a box dimension of orbits of two-dimensional discrete dynamical systems is connected to their bifurcations in a nonhyperbolic fixed point. This connection is already shown in the case of one-dimensional discrete dynamical systems and Hopf bifurcation for continuous systems. Namely, at the bifurcation point the box dimension changes from zero to a certain positive value which is connected to the appropriate bifurcation. We study a two-dimensional discrete dynamical system with only one multiplier on the unit circle, and show a result for the box dimension of an orbit on the center manifold. We also consider a planar discrete system undergoing a Neimark-Sacker bifurcation. It is shown that box dimension depends on the order of nondegeneracy at the nonhyperbolic fixed point and on the angle-displacement map. As it was expected, we prove that the box dimension is different in the rational and irrational case.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Lana Horvat Dmitrović
(autor)