Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 711439

Fractal Analysis of bifurcation of one-dimensional discrete dynamical systems


Horvat Dmitrović, Lana
Fractal Analysis of bifurcation of one-dimensional discrete dynamical systems // Singularities of planar vector fields, bifurcations and applications
Marseille, Francuska, 2009. (poster, međunarodna recenzija, neobjavljeni rad, znanstveni)


CROSBI ID: 711439 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fractal Analysis of bifurcation of one-dimensional discrete dynamical systems

Autori
Horvat Dmitrović, Lana

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni

Skup
Singularities of planar vector fields, bifurcations and applications

Mjesto i datum
Marseille, Francuska, 15.05.2009. - 20.05.2009

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Box dimension; Minkowski content; nonhyperbolic fixed point; k-nondegenerate map; bifurcation; multiplicity; weak focus; limit cycle

Sažetak
This paper is devoted to study the box dimension of the orbits of one-dimensional discrete dynamical systems and their bifurcations in nonhyperbolic fixed points. It is already known that there is a connection between some bifurcations in a nonhyperbolic fixed point of one-dimensional maps, and the box dimension of the orbits near that point. The main purpose of this paper is to generalize that result to the one-dimensional maps of class C^k and apply it to one and two-parameter bifurcations of maps with the generalized nondegeneracy conditions. These results show that the value of the box dimension changes at the bifurcation point, and depends only on the order of the nondegeneracy condition. Furthermore, we obtain the reverse result, that is, the order of the nondegeneracy of a map in a nonhyperbolic fixed point can be obtained from the box dimension of a orbit near that point. This reverse result can be applied to the continuous planar dynamical systems by using the Poincare map, in order to get the multiplicity of a weak focus or nonhyperbolic limit cycle. We also apply the main result to the bifurcations of nonhyperbolic periodic orbits in the plane.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Lana Horvat Dmitrović (autor)


Citiraj ovu publikaciju:

Horvat Dmitrović, Lana
Fractal Analysis of bifurcation of one-dimensional discrete dynamical systems // Singularities of planar vector fields, bifurcations and applications
Marseille, Francuska, 2009. (poster, međunarodna recenzija, neobjavljeni rad, znanstveni)
Horvat Dmitrović, L. (2009) Fractal Analysis of bifurcation of one-dimensional discrete dynamical systems. U: Singularities of planar vector fields, bifurcations and applications.
@article{article, author = {Horvat Dmitrovi\'{c}, Lana}, year = {2009}, keywords = {Box dimension, Minkowski content, nonhyperbolic fixed point, k-nondegenerate map, bifurcation, multiplicity, weak focus, limit cycle}, title = {Fractal Analysis of bifurcation of one-dimensional discrete dynamical systems}, keyword = {Box dimension, Minkowski content, nonhyperbolic fixed point, k-nondegenerate map, bifurcation, multiplicity, weak focus, limit cycle}, publisherplace = {Marseille, Francuska} }
@article{article, author = {Horvat Dmitrovi\'{c}, Lana}, year = {2009}, keywords = {Box dimension, Minkowski content, nonhyperbolic fixed point, k-nondegenerate map, bifurcation, multiplicity, weak focus, limit cycle}, title = {Fractal Analysis of bifurcation of one-dimensional discrete dynamical systems}, keyword = {Box dimension, Minkowski content, nonhyperbolic fixed point, k-nondegenerate map, bifurcation, multiplicity, weak focus, limit cycle}, publisherplace = {Marseille, Francuska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font