Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 711421

Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord.


Mazzone, G.L.; Margaryan, G.; Kuzhandaivel, A.; Nasrabady, S.E.; Mladinić, Miranda; Nistri, Andrea
Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord. // Neuroscience, 168 (2010), 2; 451-462 doi:10.1016/j.neuroscience.2010.03.055 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 711421 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord.

Autori
Mazzone, G.L. ; Margaryan, G. ; Kuzhandaivel, A. ; Nasrabady, S.E. ; Mladinić, Miranda ; Nistri, Andrea

Izvornik
Neuroscience (0306-4522) 168 (2010), 2; 451-462

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
spinal cord injury; kainic acid; kainate; fictive locomotion; motoneuron; organotypic culture

Sažetak
While excitotoxicity is a major contributor to the pathophysiology of acute spinal injury, its time course and the extent of cell damage in relation to locomotor network activity remain unclear. We used two in vitro models, that is, the rat isolated spinal cord and spinal organotypic cultures, to explore the basic characteristics of excitotoxicity caused by transient application of the glutamate analogue kainate followed by washout and analysis 24 h later. Electrophysiological records showed that fictive locomotion was slowed down by 10 microM kainate (with no histological loss) and fully abolished by 50 microM, while disinhibited bursting with unchanged periodicity persisted. Kainate concentrations (> or =50 microM) larger than those necessary to irreversible suppress fictive locomotion could still elicit dose- dependent motoneuron pool depolarization, and dose-dependent neuronal loss in the grey matter, especially evident in central and dorsal areas. Motoneuron numbers were largely decreased. A similar regional pattern was detected in organotypic slices, as extensive cell loss was dose related and affected motoneurons and premotoneurons: the number of dead neurons (already apparent 1 h after kainate) grew faster with the higher kainate concentration. The histological damage was accompanied by decreased MTT formazan production commensurate with the number of surviving cells. Our data suggest locomotor network function was very sensitive to excitotoxicity, even without observing extensive cell death. Excitotoxicity developed gradually leaving a time window in which neuroprotection might be attempted to preserve circuits still capable of expressing basic rhythmogenesis and reconfigure their function in terms of locomotor output.

Izvorni jezik
Engleski

Znanstvena područja
Biologija



POVEZANOST RADA


Ustanove:
Sveučilište u Rijeci - Odjel za biotehnologiju

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Mazzone, G.L.; Margaryan, G.; Kuzhandaivel, A.; Nasrabady, S.E.; Mladinić, Miranda; Nistri, Andrea
Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord. // Neuroscience, 168 (2010), 2; 451-462 doi:10.1016/j.neuroscience.2010.03.055 (međunarodna recenzija, članak, znanstveni)
Mazzone, G., Margaryan, G., Kuzhandaivel, A., Nasrabady, S., Mladinić, M. & Nistri, A. (2010) Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord.. Neuroscience, 168 (2), 451-462 doi:10.1016/j.neuroscience.2010.03.055.
@article{article, author = {Mazzone, G.L. and Margaryan, G. and Kuzhandaivel, A. and Nasrabady, S.E. and Mladini\'{c}, Miranda and Nistri, Andrea}, year = {2010}, pages = {451-462}, DOI = {10.1016/j.neuroscience.2010.03.055}, keywords = {spinal cord injury, kainic acid, kainate, fictive locomotion, motoneuron, organotypic culture}, journal = {Neuroscience}, doi = {10.1016/j.neuroscience.2010.03.055}, volume = {168}, number = {2}, issn = {0306-4522}, title = {Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord.}, keyword = {spinal cord injury, kainic acid, kainate, fictive locomotion, motoneuron, organotypic culture} }
@article{article, author = {Mazzone, G.L. and Margaryan, G. and Kuzhandaivel, A. and Nasrabady, S.E. and Mladini\'{c}, Miranda and Nistri, Andrea}, year = {2010}, pages = {451-462}, DOI = {10.1016/j.neuroscience.2010.03.055}, keywords = {spinal cord injury, kainic acid, kainate, fictive locomotion, motoneuron, organotypic culture}, journal = {Neuroscience}, doi = {10.1016/j.neuroscience.2010.03.055}, volume = {168}, number = {2}, issn = {0306-4522}, title = {Kainate-induced delayed onset of excitotoxicity with functional loss unrelated to the extent of neuronal damage in the in vitro spinal cord.}, keyword = {spinal cord injury, kainic acid, kainate, fictive locomotion, motoneuron, organotypic culture} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font