Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 711224

Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension


Lapidus, Michel L.; Rock, John A.; Žubrinić, Darko
Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension // Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics / Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J. (ur.).
Providence (RI): American Mathematical Society (AMS), 2013. str. 239-271


CROSBI ID: 711224 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension

Autori
Lapidus, Michel L. ; Rock, John A. ; Žubrinić, Darko

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics

Urednik/ci
Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J.

Izdavač
American Mathematical Society (AMS)

Grad
Providence (RI)

Godina
2013

Raspon stranica
239-271

ISBN
0-8218-9148-0

Ključne riječi
Fractal string, geometric zeta function, box-counting fractal string, box-counting zeta function, distance zeta function, tube zeta function, similarity dimension, box-counting dimension, Minkowski dimension, Minkowski content, complex dimensions, Cantor set, Cantor string, counting function, self-similar set.

Sažetak
We discuss a number of techniques for determining the Minkowski dimension of bounded subsets of some Euclidean space of any dimension, including: the box-counting dimension and equivalent definitions based on various box-counting functions ; the similarity dimension via the Moran equation (at least in the case of self-similar sets) ; the order of the (box-)counting function ; the classic result on compact subsets of the real line due to Besicovitch and Taylor, as adapted to the theory of fractal strings ; and the abscissae of convergence of new classes of zeta functions. Specifically, we define box-counting zeta functions of infinite bounded subsets of Euclidean space and discuss results from \cite{;LapRaZu}; pertaining to distance and tube zeta functions. Appealing to an analysis of these zeta functions allows for the development of theories of complex dimensions for bounded sets in Euclidean space, extending techniques and results regarding (ordinary) fractal strings obtained by the first author and van Frankenhuijsen.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)

Citiraj ovu publikaciju:

Lapidus, Michel L.; Rock, John A.; Žubrinić, Darko
Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension // Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics / Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J. (ur.).
Providence (RI): American Mathematical Society (AMS), 2013. str. 239-271
Lapidus, M., Rock, J. & Žubrinić, D. (2013) Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension. U: Carfi, D., Lapidus, M. & Pearse, E. (ur.) Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics. Providence (RI), American Mathematical Society (AMS), str. 239-271.
@inbook{inbook, author = {Lapidus, Michel L. and Rock, John A. and \v{Z}ubrini\'{c}, Darko}, year = {2013}, pages = {239-271}, keywords = {Fractal string, geometric zeta function, box-counting fractal string, box-counting zeta function, distance zeta function, tube zeta function, similarity dimension, box-counting dimension, Minkowski dimension, Minkowski content, complex dimensions, Cantor set, Cantor string, counting function, self-similar set.}, isbn = {0-8218-9148-0}, title = {Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension}, keyword = {Fractal string, geometric zeta function, box-counting fractal string, box-counting zeta function, distance zeta function, tube zeta function, similarity dimension, box-counting dimension, Minkowski dimension, Minkowski content, complex dimensions, Cantor set, Cantor string, counting function, self-similar set.}, publisher = {American Mathematical Society (AMS)}, publisherplace = {Providence (RI)} }
@inbook{inbook, author = {Lapidus, Michel L. and Rock, John A. and \v{Z}ubrini\'{c}, Darko}, year = {2013}, pages = {239-271}, keywords = {Fractal string, geometric zeta function, box-counting fractal string, box-counting zeta function, distance zeta function, tube zeta function, similarity dimension, box-counting dimension, Minkowski dimension, Minkowski content, complex dimensions, Cantor set, Cantor string, counting function, self-similar set.}, isbn = {0-8218-9148-0}, title = {Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension}, keyword = {Fractal string, geometric zeta function, box-counting fractal string, box-counting zeta function, distance zeta function, tube zeta function, similarity dimension, box-counting dimension, Minkowski dimension, Minkowski content, complex dimensions, Cantor set, Cantor string, counting function, self-similar set.}, publisher = {American Mathematical Society (AMS)}, publisherplace = {Providence (RI)} }




Contrast
Increase Font
Decrease Font
Dyslexic Font