Pregled bibliografske jedinice broj: 711224
Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension
Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension // Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics / Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J. (ur.).
Providence (RI): American Mathematical Society (AMS), 2013. str. 239-271
CROSBI ID: 711224 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Box-counting fractal strings, zeta functions, and equivalent forms of Minkowski dimension
Autori
Lapidus, Michel L. ; Rock, John A. ; Žubrinić, Darko
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics
Urednik/ci
Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J.
Izdavač
American Mathematical Society (AMS)
Grad
Providence (RI)
Godina
2013
Raspon stranica
239-271
ISBN
0-8218-9148-0
Ključne riječi
Fractal string, geometric zeta function, box-counting fractal string, box-counting zeta function, distance zeta function, tube zeta function, similarity dimension, box-counting dimension, Minkowski dimension, Minkowski content, complex dimensions, Cantor set, Cantor string, counting function, self-similar set.
Sažetak
We discuss a number of techniques for determining the Minkowski dimension of bounded subsets of some Euclidean space of any dimension, including: the box-counting dimension and equivalent definitions based on various box-counting functions ; the similarity dimension via the Moran equation (at least in the case of self-similar sets) ; the order of the (box-)counting function ; the classic result on compact subsets of the real line due to Besicovitch and Taylor, as adapted to the theory of fractal strings ; and the abscissae of convergence of new classes of zeta functions. Specifically, we define box-counting zeta functions of infinite bounded subsets of Euclidean space and discuss results from \cite{;LapRaZu}; pertaining to distance and tube zeta functions. Appealing to an analysis of these zeta functions allows for the development of theories of complex dimensions for bounded sets in Euclidean space, extending techniques and results regarding (ordinary) fractal strings obtained by the first author and van Frankenhuijsen.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Darko Žubrinić
(autor)