Pregled bibliografske jedinice broj: 709747
Delaunay polytopes derived from the Leech lattice
Delaunay polytopes derived from the Leech lattice // Journal de théorie des nombres de Bordeaux, 26 (2014), 1; 85-101 doi:10.5802/jtnb.860 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 709747 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Delaunay polytopes derived from the Leech lattice
Autori
Dutour Sikirić, Mathieu ; Rybnikov, Konstantin
Izvornik
Journal de théorie des nombres de Bordeaux (1246-7405) 26
(2014), 1;
85-101
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
lattices; Delaunay polytopes; covering density
Sažetak
A Delaunay polytope in a lattice L is perfect if any affine transformation that preserve its Delaunay property is a composite of an homothety and an isometry. Perfect Delaunay polytopes are rare in low dimension and here we consider the ones that one can get in lattice that are sections of the Leech lattice. By doing so we are able to find lattices with several orbits of perfect Delaunay polytopes. Also we exhibit Delaunay polytopes which remain Delaunay in some superlattices. We found perfect Delaunay polytopes with small automorphism group relative to the automorphism group of the lattice. And we prove that some perfect Delaunay polytopes have lamination number 5, which is higher than previously known 3. A well known construction of centrally symmetric perfect Delaunay polytopes uses a laminated construction from an antisymmetric perfect Delaunay polytope. We fully classify the types of perfect Delaunay polytopes that can occur. Finally, we derived an upper bound for the covering radius of Lambda_{; ; 24}; ; (v)*, which generalizes the Smith bound and we prove that this bound is met only by Lambda_{; ; 23}; ; *, the best known lattice covering in R^23.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet