Pregled bibliografske jedinice broj: 709742
On the sum of a parallelotope and a zonotope
On the sum of a parallelotope and a zonotope // European journal of combinatorics, 42 (2014), 2014; 49-73 doi:10.1016/j.ejc.2014.05.005 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 709742 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the sum of a parallelotope and a zonotope
Autori
Dutour Sikirić, Mathieu ; Grishukhin, Viatcheslav ; Alexandre, Magazinov
Izvornik
European journal of combinatorics (0195-6698) 42
(2014), 2014;
49-73
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Lattices ; Parallelotopes ; zonotope
Sažetak
A parallelotope P is a polytope that admits a facet-to-facet tiling of space by translation copies of P along a lattice. The Voronoi cell P_V(L) of a lattice L is an example of a parallelotope. A parallelotope can be uniquely decomposed as the Minkowski sum of a zone closed parallelotope P and a zonotope Z(U), where U is the set of vectors used to generate the zonotope. In this paper we consider the related question: When is the Minkowski sum of a general parallelotope and a zonotope P+Z(U) a parallelotope? Two necessary conditions are that the vectors of $U$ have to be free and form an unimodular set. Given an unimodular set U of free vectors, we give several methods for checking if P + Z(U) is a parallelotope. Using this we classify such zonotopes for some highly symmetric lattices. In the case of the root lattice E6, it is possible to give a more geometric description of the admissible sets of vectors U. We found that the set of admissible vectors, called free vectors, is described by the well-known configuration of 27 lines in a cubic. Based on a detailed study of the geometry of P_V(E6), we give a simple characterization of the configurations of vectors U such that P_V(E6) + Z(U) is a parallelotope. The enumeration yields 10 maximal families of vectors, which are presented by their description as regular matroids.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet