Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 709742

On the sum of a parallelotope and a zonotope


Dutour Sikirić, Mathieu; Grishukhin, Viatcheslav; Alexandre, Magazinov
On the sum of a parallelotope and a zonotope // European journal of combinatorics, 42 (2014), 2014; 49-73 doi:10.1016/j.ejc.2014.05.005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 709742 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On the sum of a parallelotope and a zonotope

Autori
Dutour Sikirić, Mathieu ; Grishukhin, Viatcheslav ; Alexandre, Magazinov

Izvornik
European journal of combinatorics (0195-6698) 42 (2014), 2014; 49-73

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Lattices ; Parallelotopes ; zonotope

Sažetak
A parallelotope P is a polytope that admits a facet-to-facet tiling of space by translation copies of P along a lattice. The Voronoi cell P_V(L) of a lattice L is an example of a parallelotope. A parallelotope can be uniquely decomposed as the Minkowski sum of a zone closed parallelotope P and a zonotope Z(U), where U is the set of vectors used to generate the zonotope. In this paper we consider the related question: When is the Minkowski sum of a general parallelotope and a zonotope P+Z(U) a parallelotope? Two necessary conditions are that the vectors of $U$ have to be free and form an unimodular set. Given an unimodular set U of free vectors, we give several methods for checking if P + Z(U) is a parallelotope. Using this we classify such zonotopes for some highly symmetric lattices. In the case of the root lattice E6, it is possible to give a more geometric description of the admissible sets of vectors U. We found that the set of admissible vectors, called free vectors, is described by the well-known configuration of 27 lines in a cubic. Based on a detailed study of the geometry of P_V(E6), we give a simple characterization of the configurations of vectors U such that P_V(E6) + Z(U) is a parallelotope. The enumeration yields 10 maximal families of vectors, which are presented by their description as regular matroids.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mathieu Dutour Sikirić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com arxiv.org

Citiraj ovu publikaciju:

Dutour Sikirić, Mathieu; Grishukhin, Viatcheslav; Alexandre, Magazinov
On the sum of a parallelotope and a zonotope // European journal of combinatorics, 42 (2014), 2014; 49-73 doi:10.1016/j.ejc.2014.05.005 (međunarodna recenzija, članak, znanstveni)
Dutour Sikirić, M., Grishukhin, V. & Alexandre, M. (2014) On the sum of a parallelotope and a zonotope. European journal of combinatorics, 42 (2014), 49-73 doi:10.1016/j.ejc.2014.05.005.
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Grishukhin, Viatcheslav and Alexandre, Magazinov}, year = {2014}, pages = {49-73}, DOI = {10.1016/j.ejc.2014.05.005}, keywords = {Lattices, Parallelotopes, zonotope}, journal = {European journal of combinatorics}, doi = {10.1016/j.ejc.2014.05.005}, volume = {42}, number = {2014}, issn = {0195-6698}, title = {On the sum of a parallelotope and a zonotope}, keyword = {Lattices, Parallelotopes, zonotope} }
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Grishukhin, Viatcheslav and Alexandre, Magazinov}, year = {2014}, pages = {49-73}, DOI = {10.1016/j.ejc.2014.05.005}, keywords = {Lattices, Parallelotopes, zonotope}, journal = {European journal of combinatorics}, doi = {10.1016/j.ejc.2014.05.005}, volume = {42}, number = {2014}, issn = {0195-6698}, title = {On the sum of a parallelotope and a zonotope}, keyword = {Lattices, Parallelotopes, zonotope} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font