Pregled bibliografske jedinice broj: 708606
Modelling river temperature from air temperature: case of the River Drava (Croatia) = Modélisation de température de l’air et de la température de la rivière Drava (Croatie)
Modelling river temperature from air temperature: case of the River Drava (Croatia) = Modélisation de température de l’air et de la température de la rivière Drava (Croatie) // Hydrological sciences journal, 60 (2015), 9; 1490-1507 doi:10.1080/02626667.2014.914215 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 708606 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Modelling river temperature from air temperature: case of the River Drava (Croatia) = Modélisation de température de l’air et de la température de la rivière Drava (Croatie)
(Modelling river temperature from air temperature: case of the River Drava (Croatia))
Autori
Rabi, Anamarija ; Hadzima-Nyarko, Marijana ; Šperac, Marija
Izvornik
Hydrological sciences journal (0262-6667) 60
(2015), 9;
1490-1507
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
air temperature; river temperature; multilayer feed-forward artificial neural
Sažetak
Measurements made in the past few decades undeniably indicate climate change. The most visible sign of global climate change is air temperature, while less visible indicators include changes in river water temperatures. Changes in river temperature can significantly affect the environment, primarily the biosphere. The physical, biological and chemical characteristics of the river are directly affected by water temperature. The estimation of this relationship presents a complex problem. Although river temperature is influenced by hydrological and meteorological factors, the purpose of this study is to model daily water temperature using only one known parameter – mean air temperature. The relationship between the daily mean air and daily water temperature of the River Drava is analysed using linear regression, stochastic modelling or nonlinear regression and multilayer perceptron (MLP) feed-forward neural networks. The results indicate that the MLP models are much better models and they can be used for the estimation and prediction of daily mean river temperature.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo
POVEZANOST RADA
Ustanove:
Građevinski i arhitektonski fakultet Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus