Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 706537

QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks


Rastija, Vesna; Masand, Vijay H.
QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks // Combinatorial chemistry & high throughput screening, 17 (2014), 8; 709-717 doi:10.2174/1386207317666140804161605 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 706537 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks

Autori
Rastija, Vesna ; Masand, Vijay H.

Izvornik
Combinatorial chemistry & high throughput screening (1386-2073) 17 (2014), 8; 709-717

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
antitrypanosomal activity ; genetic algorithm ; multiple linear regression ; neural networks ; polyphenols ; QSAR

Sažetak
In order to find a thriving quantitative structure-activity relationship for antitrypanosomal activities (against Trypanosma brucei rhodesiense) of polyphenols that belong to different structural groups, multiple linear regression (MLR) and artificial neural networks (ANN) were employed. The analysis was performed on two different-sized training sets (59 % and 78 % molecules in the training set), resulting in relatively successful MLR and ANN models for the data set containing the smaller training set. The best MLR model obtained using the five descriptors (R3m+, GAP, DISPv, HATS2m, JGI2) was able to account only for 74 % of the variance of antitrypanosomal activities of the training set and achieved a high internal, but low external prediction. Nonlinearities of the best ANN model compared with the linear model improved the coefficient of determination to 98.6 %, and showed a better external predictive ability. The obtained models displayed relevance of the distance between oxygen atoms in molecules of polyphenols, as well as stability of molecules, measured by the difference between the energy of the highest occupied molecular orbital and the energy of the lowest unoccupied molecular orbital (GAP) for their activity.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Farmacija



POVEZANOST RADA


Ustanove:
Fakultet agrobiotehničkih znanosti Osijek

Profili:

Avatar Url Vesna Rastija (autor)

Poveznice na cjeloviti tekst rada:

doi benthamscience.com www.eurekaselect.com

Citiraj ovu publikaciju:

Rastija, Vesna; Masand, Vijay H.
QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks // Combinatorial chemistry & high throughput screening, 17 (2014), 8; 709-717 doi:10.2174/1386207317666140804161605 (međunarodna recenzija, članak, znanstveni)
Rastija, V. & Masand, V. (2014) QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks. Combinatorial chemistry & high throughput screening, 17 (8), 709-717 doi:10.2174/1386207317666140804161605.
@article{article, author = {Rastija, Vesna and Masand, Vijay H.}, year = {2014}, pages = {709-717}, DOI = {10.2174/1386207317666140804161605}, keywords = {antitrypanosomal activity, genetic algorithm, multiple linear regression, neural networks, polyphenols, QSAR}, journal = {Combinatorial chemistry and high throughput screening}, doi = {10.2174/1386207317666140804161605}, volume = {17}, number = {8}, issn = {1386-2073}, title = {QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks}, keyword = {antitrypanosomal activity, genetic algorithm, multiple linear regression, neural networks, polyphenols, QSAR} }
@article{article, author = {Rastija, Vesna and Masand, Vijay H.}, year = {2014}, pages = {709-717}, DOI = {10.2174/1386207317666140804161605}, keywords = {antitrypanosomal activity, genetic algorithm, multiple linear regression, neural networks, polyphenols, QSAR}, journal = {Combinatorial chemistry and high throughput screening}, doi = {10.2174/1386207317666140804161605}, volume = {17}, number = {8}, issn = {1386-2073}, title = {QSAR of antitrypanosomal activities of polyphenols and their analogues using multiple linear regression and artificial neural networks}, keyword = {antitrypanosomal activity, genetic algorithm, multiple linear regression, neural networks, polyphenols, QSAR} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka::


  • BIOSIS Previews (Biological Abstracts)
  • CAB Abstracts
  • CA Search (Chemical Abstracts)
  • MEDLINE
  • Scopus
  • J-Gate
  • Chemistry Citation Index


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font