Pregled bibliografske jedinice broj: 705408
Levinson's inequality for Hilbert space operators
Levinson's inequality for Hilbert space operators // Mathematical Inequalities and Applications 2014, One Thousand Papers Conference / Andrić, Maja ; Klaričić Bakula, Milica ; Varošanec, Sanja (ur.).
Zagreb: Element, 2014. str. 57-57 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 705408 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Levinson's inequality for Hilbert space operators
Autori
Mićić, Jadranka ; Pečarić, Josip ; Praljak, Marjan
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Mathematical Inequalities and Applications 2014, One Thousand Papers Conference
/ Andrić, Maja ; Klaričić Bakula, Milica ; Varošanec, Sanja - Zagreb : Element, 2014, 57-57
Skup
Mathematical Inequalities and Applications 2014, One Thousand Papers Conference
Mjesto i datum
Trogir, Hrvatska, 22.06.2014. - 26.06.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Levinson's inequality; self-adjoint operator; positive linear mapping; convex function
Sažetak
The purpose of this presentation is to consider Levinson's inequality for self-adjoint operators, positive linear mappings and the family K_c(I) or K^._c(I) of functions as follows: Let f \in C(I) be a real valued functions on an arbitrary interval I in R and c \in I^\circ, where I^\circ is the interior of I. We say that f \in K_c(I) if there exists a constant A such that the function F(x) = f(x)- (A/2) x^2 is concave on I \cap (- \infty, c] and convex on I \cap [c, \infty). Moreover, we say that f \in K^._c(I) if F is operator concave on I \cap (-\infty , c] and operator convex on I \cap [c, \infty).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
5435
Ustanove:
Tekstilno-tehnološki fakultet, Zagreb,
Fakultet strojarstva i brodogradnje, Zagreb