Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 705353

The finite difference scheme for 1d flow of a compressible micropolar fluid with homogeneous boundary conditions: a global existence theorem


Črnjarić-Žic, Nelida; Mujaković, Nermina
The finite difference scheme for 1d flow of a compressible micropolar fluid with homogeneous boundary conditions: a global existence theorem // PDEs, Continuum Mechanics and Numerical Analysis
Dubrovnik, Hrvatska, 2014. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 705353 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The finite difference scheme for 1d flow of a compressible micropolar fluid with homogeneous boundary conditions: a global existence theorem

Autori
Črnjarić-Žic, Nelida ; Mujaković, Nermina

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
PDEs, Continuum Mechanics and Numerical Analysis / - , 2014

Skup
PDEs, Continuum Mechanics and Numerical Analysis -A Conference in Honor of the 80th Anniversary of professor Ibrahim Aganovic

Mjesto i datum
Dubrovnik, Hrvatska, 26.05.2014. - 30.05.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
compressible viscous micropolar fluid; finite difference method

Sažetak
We define a finite difference method for the nonstationary 1D flow of the compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity, microrotation and heat flux are proposed. The sequence of approximate solution for our problem is constructed by using the defined finite difference approximate equations system. We investigate the properties of these approximate solutions and establish their convergence to the strong solution of our problem globally in time. Numerical experiments are performed by solving the defined approximate ordinary differential equations system using strong-stability preserving (SSP) Runge-Kutta scheme for time discretization.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci, Fakultet za matematiku

Citiraj ovu publikaciju:

Črnjarić-Žic, Nelida; Mujaković, Nermina
The finite difference scheme for 1d flow of a compressible micropolar fluid with homogeneous boundary conditions: a global existence theorem // PDEs, Continuum Mechanics and Numerical Analysis
Dubrovnik, Hrvatska, 2014. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Črnjarić-Žic, N. & Mujaković, N. (2014) The finite difference scheme for 1d flow of a compressible micropolar fluid with homogeneous boundary conditions: a global existence theorem. U: PDEs, Continuum Mechanics and Numerical Analysis.
@article{article, author = {\v{C}rnjari\'{c}-\v{Z}ic, Nelida and Mujakovi\'{c}, Nermina}, year = {2014}, keywords = {compressible viscous micropolar fluid, finite difference method}, title = {The finite difference scheme for 1d flow of a compressible micropolar fluid with homogeneous boundary conditions: a global existence theorem}, keyword = {compressible viscous micropolar fluid, finite difference method}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {\v{C}rnjari\'{c}-\v{Z}ic, Nelida and Mujakovi\'{c}, Nermina}, year = {2014}, keywords = {compressible viscous micropolar fluid, finite difference method}, title = {The finite difference scheme for 1d flow of a compressible micropolar fluid with homogeneous boundary conditions: a global existence theorem}, keyword = {compressible viscous micropolar fluid, finite difference method}, publisherplace = {Dubrovnik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font