Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 704868

Image segmentation based on complexity mining and mean-shift algorithm


Sirotković, Jadran; Dujmić, Hrvoje; Papić, Vladan
Image segmentation based on complexity mining and mean-shift algorithm // Proceedings of 19th IEEE Symposium on Computers and Communications
Funchal, 2014. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 704868 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Image segmentation based on complexity mining and mean-shift algorithm

Autori
Sirotković, Jadran ; Dujmić, Hrvoje ; Papić, Vladan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 19th IEEE Symposium on Computers and Communications / - Funchal, 2014, 1-6

ISBN
978-1-4799-4278-7

Skup
19th IEEE International Symposium on Computers and Communications (ISCC 2014)

Mjesto i datum
Funchal, Portugal, 23.06.2014. - 26.06.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
GPGPU; image segmentation; CUDA; mean shift algorithm

Sažetak
Mean shift algorithm is a well established method for image segmentation. It is particularly popular technique due to non-parametric nature which enables efficient segmentation of complex arbitrary shapes. Despite such advantage, high computational complexity still makes it unsuitable for segmentation of high resolution images in time critical applications. This paper introduces a new approach which alleviates performance issues of mean shift using complexity reduction based on information theory. Proposed algorithm starts by calculating information potential field of the image in order to get insight into complexity of the regions. Afterwards, only complex regions are segmented by computationally expensive mean shift algorithm, while segmentation of simpler regions is performed by a cheaper method. Performance of our method is additionally improved with execution of the key code sections on the GPGPU platform. Experimental results have shown that our method produces comparable segmentation quality to regular parallel mean shift, but with significant reduction in overall execution time.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
023-0232006-1662 - Računalni vid u identifikaciji kinematike sportskih aktivnosti (Papić, Vladan, MZOS ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Hrvoje Dujmić (autor)

Avatar Url Vladan Papić (autor)


Citiraj ovu publikaciju:

Sirotković, Jadran; Dujmić, Hrvoje; Papić, Vladan
Image segmentation based on complexity mining and mean-shift algorithm // Proceedings of 19th IEEE Symposium on Computers and Communications
Funchal, 2014. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Sirotković, J., Dujmić, H. & Papić, V. (2014) Image segmentation based on complexity mining and mean-shift algorithm. U: Proceedings of 19th IEEE Symposium on Computers and Communications.
@article{article, author = {Sirotkovi\'{c}, Jadran and Dujmi\'{c}, Hrvoje and Papi\'{c}, Vladan}, year = {2014}, pages = {1-6}, keywords = {GPGPU, image segmentation, CUDA, mean shift algorithm}, isbn = {978-1-4799-4278-7}, title = {Image segmentation based on complexity mining and mean-shift algorithm}, keyword = {GPGPU, image segmentation, CUDA, mean shift algorithm}, publisherplace = {Funchal, Portugal} }
@article{article, author = {Sirotkovi\'{c}, Jadran and Dujmi\'{c}, Hrvoje and Papi\'{c}, Vladan}, year = {2014}, pages = {1-6}, keywords = {GPGPU, image segmentation, CUDA, mean shift algorithm}, isbn = {978-1-4799-4278-7}, title = {Image segmentation based on complexity mining and mean-shift algorithm}, keyword = {GPGPU, image segmentation, CUDA, mean shift algorithm}, publisherplace = {Funchal, Portugal} }




Contrast
Increase Font
Decrease Font
Dyslexic Font