Pregled bibliografske jedinice broj: 704592
Modelling and Integration Concepts of Multibody Systems on Lie Groups
Modelling and Integration Concepts of Multibody Systems on Lie Groups // Multibody Dynamics, Computational Methods and Applications / Terze, Zdravko (ur.).
Cham : Heidelberg : New York : Dordrecht : London: Springer, 2014. str. 123-143
CROSBI ID: 704592 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Modelling and Integration Concepts of Multibody Systems on Lie Groups
Autori
Muller, Andreas ; Terze, Zdravko
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Multibody Dynamics, Computational Methods and Applications
Urednik/ci
Terze, Zdravko
Izdavač
Springer
Grad
Cham : Heidelberg : New York : Dordrecht : London
Godina
2014
Raspon stranica
123-143
ISBN
978-3-319-07260-9
Ključne riječi
Lie group integration, Rigid body dynamics, Multibody systems, Constraint satisfaction, Screw systems, Munthe-Kaas scheme, Motion integrals, Coadjoint orbits preservation, Angular momentum conservation
Sažetak
Lie group integration schemes for multibody systems (MBS) are attractive as they provide a coordinate-free and thus singularity-free approach to MBS modeling. The Lie group setting also allows for developing integration schemes that preserve motion integrals and coadjoint orbits. Most of the recently proposed Lie group integration schemes are based on variants of generalized alpha Newmark schemes. In this chapter constrained MBS are modeled by a system of differential-algebraic equations (DAE) on a configuration being a subvariety of the Lie group SE(3)^n. This is transformed to an index 1 DAE system that is integrated with Munthe-Kaas (MK) integration scheme. The chapter further addresses geometric integration schemes that preserve integrals of motion. In this context, a non-canonical Lie-group Störmer-Verlet integration scheme with direct SO(3) rotational update is presented. The method is 2nd order accurate, it is angular momentum preserving, and it does not introduce a drift in the energy balance of the system. Moreover, although being fully explicit, the method achieves excellent conservation of the angular momentum of a free rotational body and the motion integrals of the Lagrangian top. A higher-order coadjoint-preserving integration on SO(3) scheme is also presented. This method exactly preserves spatial angular momentum of a free body and it is particularly numerically efficient.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Strojarstvo, Zrakoplovstvo, raketna i svemirska tehnika
POVEZANOST RADA
Projekti:
120-1201829-1664 - Numeričke simulacijske procedure dinamike slijetanja elastičnog zrakoplova (Terze, Zdravko, MZOS ) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Profili:
Zdravko Terze
(autor)