Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 702133

Localisation principle for 1-scale H-measures


Antonić, Nenad; Erceg, Marko; Lazar, Martin
Localisation principle for 1-scale H-measures // PDEs, Continuum Mechanics and Numerical Analysis - abstracts / Tambača, Josip i dr. (ur.).
Zagreb, 2014. str. 17-18 (predavanje, domaća recenzija, sažetak, znanstveni)


CROSBI ID: 702133 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Localisation principle for 1-scale H-measures

Autori
Antonić, Nenad ; Erceg, Marko ; Lazar, Martin

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
PDEs, Continuum Mechanics and Numerical Analysis - abstracts / Tambača, Josip i dr. - Zagreb, 2014, 17-18

Skup
PDEs, Continuum Mechanics and Numerical Analysis - A Conference in Honor of the 80th Anniversary of professor Ibrahim Aganovic

Mjesto i datum
Dubrovnik, Hrvatska, 26.05.2014. - 30.05.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
H-measures ; semiclassical ; 1-scale ; localisation principle

Sažetak
Microlocal defect functionals (H-measures, H-distributions, semiclassical measures etc.) are objects which determine, in some sense, the lack of strong compactness for weakly convergent $L^p$ sequences. In contrast to the semiclassical measures, H-measures are not suitable to treat problems with a characteristic length (e.g.~thickness of a plate). Luc Tartar overcame the mentioned restriction by introducing 1-scale H-measures, a generalisation of H-measures with a characteristic length. Moreover, these objects are also an extension of semiclassical measures, being functionals on continuous functions on a compactification of $R^d\setminus\{; ; ; 0\}; ; ; $. We improve and generalise Tartar's localisation principle for 1-scale H-measures from which we are able to derive known localisation principles for H-measures and semiclassical measures. The localisation principle for H-measures has already been successfully applied in many fields (compactness by compensation, small amplitude homogenisation, velocity averaging, averaged control etc.), and the new results expected to have an even wider class of possible applications.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
MZOS-037-0372787-2795 - Titrajuća rješenja parcijalnih diferencijalnih jednadžbi (Antonić, Nenad, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Marko Erceg (autor)

Avatar Url Nenad Antonić (autor)

Avatar Url Martin Lazar (autor)

Citiraj ovu publikaciju:

Antonić, Nenad; Erceg, Marko; Lazar, Martin
Localisation principle for 1-scale H-measures // PDEs, Continuum Mechanics and Numerical Analysis - abstracts / Tambača, Josip i dr. (ur.).
Zagreb, 2014. str. 17-18 (predavanje, domaća recenzija, sažetak, znanstveni)
Antonić, N., Erceg, M. & Lazar, M. (2014) Localisation principle for 1-scale H-measures. U: Tambača, J. (ur.)PDEs, Continuum Mechanics and Numerical Analysis - abstracts.
@article{article, author = {Antoni\'{c}, Nenad and Erceg, Marko and Lazar, Martin}, editor = {Tamba\v{c}a, J.}, year = {2014}, pages = {17-18}, keywords = {H-measures, semiclassical, 1-scale, localisation principle}, title = {Localisation principle for 1-scale H-measures}, keyword = {H-measures, semiclassical, 1-scale, localisation principle}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Antoni\'{c}, Nenad and Erceg, Marko and Lazar, Martin}, editor = {Tamba\v{c}a, J.}, year = {2014}, pages = {17-18}, keywords = {H-measures, semiclassical, 1-scale, localisation principle}, title = {Localisation principle for 1-scale H-measures}, keyword = {H-measures, semiclassical, 1-scale, localisation principle}, publisherplace = {Dubrovnik, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font