Pregled bibliografske jedinice broj: 702133
Localisation principle for 1-scale H-measures
Localisation principle for 1-scale H-measures // PDEs, Continuum Mechanics and Numerical Analysis - abstracts / Tambača, Josip i dr. (ur.).
Zagreb, 2014. str. 17-18 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 702133 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Localisation principle for 1-scale H-measures
Autori
Antonić, Nenad ; Erceg, Marko ; Lazar, Martin
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
PDEs, Continuum Mechanics and Numerical Analysis - abstracts
/ Tambača, Josip i dr. - Zagreb, 2014, 17-18
Skup
PDEs, Continuum Mechanics and Numerical Analysis - A Conference in Honor of the 80th Anniversary of professor Ibrahim Aganovic
Mjesto i datum
Dubrovnik, Hrvatska, 26.05.2014. - 30.05.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
H-measures ; semiclassical ; 1-scale ; localisation principle
Sažetak
Microlocal defect functionals (H-measures, H-distributions, semiclassical measures etc.) are objects which determine, in some sense, the lack of strong compactness for weakly convergent $L^p$ sequences. In contrast to the semiclassical measures, H-measures are not suitable to treat problems with a characteristic length (e.g.~thickness of a plate). Luc Tartar overcame the mentioned restriction by introducing 1-scale H-measures, a generalisation of H-measures with a characteristic length. Moreover, these objects are also an extension of semiclassical measures, being functionals on continuous functions on a compactification of $R^d\setminus\{; ; ; 0\}; ; ; $. We improve and generalise Tartar's localisation principle for 1-scale H-measures from which we are able to derive known localisation principles for H-measures and semiclassical measures. The localisation principle for H-measures has already been successfully applied in many fields (compactness by compensation, small amplitude homogenisation, velocity averaging, averaged control etc.), and the new results expected to have an even wider class of possible applications.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372787-2795 - Titrajuća rješenja parcijalnih diferencijalnih jednadžbi (Antonić, Nenad, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb