Pregled bibliografske jedinice broj: 696712
ERROR ANALYSIS OF LOW-RANK THREE-WAY TENSOR FACTORIZATION APPROACH TO BLIND SOURCE SEPARATION
ERROR ANALYSIS OF LOW-RANK THREE-WAY TENSOR FACTORIZATION APPROACH TO BLIND SOURCE SEPARATION // 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) / Gini, Fulvio ; Luise, Marco (ur.).
Firenca, Italija: Institute of Electrical and Electronics Engineers (IEEE), 2014. str. 3210-3214 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 696712 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
ERROR ANALYSIS OF LOW-RANK THREE-WAY TENSOR FACTORIZATION APPROACH TO BLIND SOURCE SEPARATION
Autori
Kopriva, Ivica ; Royer, Jean-Philip ; Thirion-Moreau, Nadege ; Comon, Pierre
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
/ Gini, Fulvio ; Luise, Marco - : Institute of Electrical and Electronics Engineers (IEEE), 2014, 3210-3214
ISBN
978-1-4799-2893-414
Skup
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Mjesto i datum
Firenca, Italija, 04.05.2014. - 09.05.2014
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Tensor models; multidimensional signal; blind source separation
Sažetak
In tensor factorization approach to blind separation of multidimensional sources two formulas for calculating the source tensor have emerged. In practice, it is observed that these two schemes exhibit different levels of robustness against perturbations of the factors involved in the tensor model. Motivated by both practical reasons and the will to better figure this out, we present error analyses in source tensor estimation performed by low-rank factorization of three-way tensors. To that aim, computer simulations as well as the analytical calculation of the theoretical error are carried out. The conclusions drawn from these numerical and analytical error analyses are supported by the results obtained thanks to the tensor factorization based blind decomposition of an experimental multispectral image of a skin tumor.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo