Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 693596

Low-Power Wearable Respiratory Sound Sensing


Oletić, Dinko; Arsenali, Bruno; Bilas, Vedran
Low-Power Wearable Respiratory Sound Sensing // Sensors, 14 (2014), 4; 6535-6566 doi:10.3390/s140406535 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 693596 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Low-Power Wearable Respiratory Sound Sensing

Autori
Oletić, Dinko ; Arsenali, Bruno ; Bilas, Vedran

Izvornik
Sensors (1424-8220) 14 (2014), 4; 6535-6566

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
wearable sensor; respiratory sounds; wheeze detection; short-term Fourier transform; decision trees; DSP; low-power implementation

Sažetak
Building upon the findings from the field of automated recognition of respiratory sound patterns, we propose a wearable wireless sensor implementing on-board respiratory sound acquisition and classification, to enable continuous monitoring of symptoms, such as asthmatic wheezing. Low-power consumption of such a sensor is required in order to achieve long autonomy. Considering that the power consumption of its radio is kept minimal if transmitting only upon (rare) occurrences of wheezing, we focus on optimizing the power consumption of the digital signal processor (DSP). Based on a comprehensive review of asthmatic wheeze detection algorithms, we analyze the computational complexity of common features drawn from short-time Fourier transform (STFT) and decision tree classification. Four algorithms were implemented on a low-power TMS320C5505 DSP. Their classification accuracies were evaluated on a dataset of prerecorded respiratory sounds in two operating scenarios of different detection fidelities. The execution times of all algorithms were measured. The best classification accuracy of over 92%, while occupying only 2.6% of the DSP’s processing time, is obtained for the algorithm featuring the time- frequency tracking of shapes of crests originating from wheezing, with spectral features modeled using energy.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036-0361621-1625 - Inteligentni sustavi za mjerenje teško mjerljivih veličina (Bilas, Vedran, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Dinko Oletić (autor)

Avatar Url Vedran Bilas (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Oletić, Dinko; Arsenali, Bruno; Bilas, Vedran
Low-Power Wearable Respiratory Sound Sensing // Sensors, 14 (2014), 4; 6535-6566 doi:10.3390/s140406535 (međunarodna recenzija, članak, znanstveni)
Oletić, D., Arsenali, B. & Bilas, V. (2014) Low-Power Wearable Respiratory Sound Sensing. Sensors, 14 (4), 6535-6566 doi:10.3390/s140406535.
@article{article, author = {Oleti\'{c}, Dinko and Arsenali, Bruno and Bilas, Vedran}, year = {2014}, pages = {6535-6566}, DOI = {10.3390/s140406535}, keywords = {wearable sensor, respiratory sounds, wheeze detection, short-term Fourier transform, decision trees, DSP, low-power implementation}, journal = {Sensors}, doi = {10.3390/s140406535}, volume = {14}, number = {4}, issn = {1424-8220}, title = {Low-Power Wearable Respiratory Sound Sensing}, keyword = {wearable sensor, respiratory sounds, wheeze detection, short-term Fourier transform, decision trees, DSP, low-power implementation} }
@article{article, author = {Oleti\'{c}, Dinko and Arsenali, Bruno and Bilas, Vedran}, year = {2014}, pages = {6535-6566}, DOI = {10.3390/s140406535}, keywords = {wearable sensor, respiratory sounds, wheeze detection, short-term Fourier transform, decision trees, DSP, low-power implementation}, journal = {Sensors}, doi = {10.3390/s140406535}, volume = {14}, number = {4}, issn = {1424-8220}, title = {Low-Power Wearable Respiratory Sound Sensing}, keyword = {wearable sensor, respiratory sounds, wheeze detection, short-term Fourier transform, decision trees, DSP, low-power implementation} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Uključenost u ostale bibliografske baze podataka::


  • INSPEC
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font