Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 692004

Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism


Ma, Yudong; Matuško, Jadranko; Borrelli, Francesco
Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism // IEEE transactions on control systems technology, 23 (2015), 1; 101-116 doi:10.1109/TCST.2014.2313736 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 692004 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism

Autori
Ma, Yudong ; Matuško, Jadranko ; Borrelli, Francesco

Izvornik
IEEE transactions on control systems technology (1063-6536) 23 (2015), 1; 101-116

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
stochastic model predictive control; building energy system; nonlinear system

Sažetak
This paper presents a stochastic model predictive control (SMPC) approach to building heating, ventilation, and air conditioning (HVAC) systems. The building HVAC system is modeled as a network of thermal zones controlled by a central air handling unit and local variable air volume boxes. In the first part of the paper, simplified nonlinear models are presented for thermal zones and HVAC system components. The uncertain load forecast in each thermal zone is modeled by finitely supported probability density functions (pdf). These pdfs are initialized by using historical data and updated as new data becomes available. In the second part of the paper, we present a SMPC design that minimizes expected energy cost and bounds the probability of thermal comfort violations. SMPC uses predictive knowledge of uncertain loads in each zone during the design stage. The complexity of a commercial building requires special handling of system nonlinearities and chance constraints in order to enable real- time implementation, minimize energy cost, and guarantee thermal comfort. The paper focuses on the trade-off between computational tractability and conservatism of the resulting SMPC scheme. The proposed SMPC scheme is compared with alternative SMPC designs, and the effectiveness of the proposed approach is demonstrated by simulation and experimental tests.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
036-0363078-1629 - Upravljanje složenim elektromehaničkim sustavima za manipulacije u transportu (Kolonić, Fetah, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Jadranko Matuško (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Ma, Yudong; Matuško, Jadranko; Borrelli, Francesco
Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism // IEEE transactions on control systems technology, 23 (2015), 1; 101-116 doi:10.1109/TCST.2014.2313736 (međunarodna recenzija, članak, znanstveni)
Ma, Y., Matuško, J. & Borrelli, F. (2015) Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism. IEEE transactions on control systems technology, 23 (1), 101-116 doi:10.1109/TCST.2014.2313736.
@article{article, author = {Ma, Yudong and Matu\v{s}ko, Jadranko and Borrelli, Francesco}, year = {2015}, pages = {101-116}, DOI = {10.1109/TCST.2014.2313736}, keywords = {stochastic model predictive control, building energy system, nonlinear system}, journal = {IEEE transactions on control systems technology}, doi = {10.1109/TCST.2014.2313736}, volume = {23}, number = {1}, issn = {1063-6536}, title = {Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism}, keyword = {stochastic model predictive control, building energy system, nonlinear system} }
@article{article, author = {Ma, Yudong and Matu\v{s}ko, Jadranko and Borrelli, Francesco}, year = {2015}, pages = {101-116}, DOI = {10.1109/TCST.2014.2313736}, keywords = {stochastic model predictive control, building energy system, nonlinear system}, journal = {IEEE transactions on control systems technology}, doi = {10.1109/TCST.2014.2313736}, volume = {23}, number = {1}, issn = {1063-6536}, title = {Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism}, keyword = {stochastic model predictive control, building energy system, nonlinear system} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font