Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 691523

Learning swing-free trajectories for UAVs with a suspended load


Faust, Aleksandra; Palunko, Ivana; Cruz, Patricio; Fierro, Rafael; Tapia, Lydia
Learning swing-free trajectories for UAVs with a suspended load // Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2013
Karlsruhe, Njemačka, 2013. str. 4902-4909 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 691523 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Learning swing-free trajectories for UAVs with a suspended load

Autori
Faust, Aleksandra ; Palunko, Ivana ; Cruz, Patricio ; Fierro, Rafael ; Tapia, Lydia

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2013 / - , 2013, 4902-4909

Skup
IEEE International Conference on Robotics and Automation (ICRA), 2013

Mjesto i datum
Karlsruhe, Njemačka, 06.05.2013. - 10.05.2013

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
autonomous aerial vehicles; helicopters; learning (artificial intelligence); path planning; robot dynamics

Sažetak
Attaining autonomous flight is an important task in aerial robotics. Often flight trajectories are not only subject to unknown system dynamics, but also to specific task constraints. This paper presents a motion planning method for generating trajectories with minimal residual oscillations (swing-free) for rotorcraft carrying a suspended loads. We rely on a finite-sampling, batch reinforcement learning algorithm to train the system for a particular load. We find criteria that allow the trained agent to be transferred to a variety of models, state and action spaces and produce a number of different trajectories. Through a combination of simulations and experiments, we demonstrate that the inferred policy is robust to noise and the unmodeled dynamics of the system. The contributions of this work are 1) applying reinforcement learning to solve the problem of finding swing-free trajectories for rotorcraft, 2) designing a problem-specific feature vector for value function approximation, 3) giving sufficient conditions for successful learning transfer to different models, state and action spaces, and 4) verification of the resulting trajectories in both simulation and autonomous control of quadrotors with suspended loads.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Profili:

Avatar Url Ivana Palunko (autor)


Citiraj ovu publikaciju:

Faust, Aleksandra; Palunko, Ivana; Cruz, Patricio; Fierro, Rafael; Tapia, Lydia
Learning swing-free trajectories for UAVs with a suspended load // Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2013
Karlsruhe, Njemačka, 2013. str. 4902-4909 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Faust, A., Palunko, I., Cruz, P., Fierro, R. & Tapia, L. (2013) Learning swing-free trajectories for UAVs with a suspended load. U: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2013.
@article{article, author = {Faust, Aleksandra and Palunko, Ivana and Cruz, Patricio and Fierro, Rafael and Tapia, Lydia}, year = {2013}, pages = {4902-4909}, keywords = {autonomous aerial vehicles, helicopters, learning (artificial intelligence), path planning, robot dynamics}, title = {Learning swing-free trajectories for UAVs with a suspended load}, keyword = {autonomous aerial vehicles, helicopters, learning (artificial intelligence), path planning, robot dynamics}, publisherplace = {Karlsruhe, Njema\v{c}ka} }
@article{article, author = {Faust, Aleksandra and Palunko, Ivana and Cruz, Patricio and Fierro, Rafael and Tapia, Lydia}, year = {2013}, pages = {4902-4909}, keywords = {autonomous aerial vehicles, helicopters, learning (artificial intelligence), path planning, robot dynamics}, title = {Learning swing-free trajectories for UAVs with a suspended load}, keyword = {autonomous aerial vehicles, helicopters, learning (artificial intelligence), path planning, robot dynamics}, publisherplace = {Karlsruhe, Njema\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font