Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 691300

Load Forecast of a University Building for Application in Microgrid Power Flow Optimization


Gulin, Marko; Vašak, Mario; Banjac, Goran; Tomiša, Tomislav
Load Forecast of a University Building for Application in Microgrid Power Flow Optimization // Proceedings of the IEEE International Energy Conference, EnergyCon 2014
Dubrovnik, Hrvatska, 2014. str. 1284-1288 doi:10.1109/ENERGYCON.2014.6850579 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 691300 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Load Forecast of a University Building for Application in Microgrid Power Flow Optimization

Autori
Gulin, Marko ; Vašak, Mario ; Banjac, Goran ; Tomiša, Tomislav

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the IEEE International Energy Conference, EnergyCon 2014 / - , 2014, 1284-1288

Skup
IEEE International Energy Conference, EnergyCon

Mjesto i datum
Dubrovnik, Hrvatska, 13.05.2014. - 16.05.2014

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
University Building ; Load Forecast ; Microgrids ; Power Flow Optimization ; Neural Networks

Sažetak
Microgrid is defined as a cluster of distributed generation sources, storages and loads that cooperate together in order to improve power supply reliability and overall power system stability. Short-term power production and load profile prediction is very important for power flow optimization in a microgrid, thus enhancing the management of distributed generation sources and storages in order to improve the microgrid reliability, as well as the economics of energy trade with electricity markets. However, short- term load prediction is a complex procedure, mainly because of the highly nonsmooth and nonlinear behaviour of the load time series. In this paper we develop and verify a neural-network- based short-term load profile prediction model. Neural network inputs are lagged load data, as well as meteorological and time data, while neural network output is load at the particular moment. Neural network training and validation is performed on load data recorded at University of Zagreb Faculty of Electrical Engineering and Computing, and on meteorological data obtained from Meteorological and Hydrological Service of Croatia, in period 2011-2013.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Temeljne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mario Vašak (autor)

Avatar Url Marko Gulin (autor)

Avatar Url Tomislav Tomiša (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Gulin, Marko; Vašak, Mario; Banjac, Goran; Tomiša, Tomislav
Load Forecast of a University Building for Application in Microgrid Power Flow Optimization // Proceedings of the IEEE International Energy Conference, EnergyCon 2014
Dubrovnik, Hrvatska, 2014. str. 1284-1288 doi:10.1109/ENERGYCON.2014.6850579 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gulin, M., Vašak, M., Banjac, G. & Tomiša, T. (2014) Load Forecast of a University Building for Application in Microgrid Power Flow Optimization. U: Proceedings of the IEEE International Energy Conference, EnergyCon 2014 doi:10.1109/ENERGYCON.2014.6850579.
@article{article, author = {Gulin, Marko and Va\v{s}ak, Mario and Banjac, Goran and Tomi\v{s}a, Tomislav}, year = {2014}, pages = {1284-1288}, DOI = {10.1109/ENERGYCON.2014.6850579}, keywords = {University Building, Load Forecast, Microgrids, Power Flow Optimization, Neural Networks}, doi = {10.1109/ENERGYCON.2014.6850579}, title = {Load Forecast of a University Building for Application in Microgrid Power Flow Optimization}, keyword = {University Building, Load Forecast, Microgrids, Power Flow Optimization, Neural Networks}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Gulin, Marko and Va\v{s}ak, Mario and Banjac, Goran and Tomi\v{s}a, Tomislav}, year = {2014}, pages = {1284-1288}, DOI = {10.1109/ENERGYCON.2014.6850579}, keywords = {University Building, Load Forecast, Microgrids, Power Flow Optimization, Neural Networks}, doi = {10.1109/ENERGYCON.2014.6850579}, title = {Load Forecast of a University Building for Application in Microgrid Power Flow Optimization}, keyword = {University Building, Load Forecast, Microgrids, Power Flow Optimization, Neural Networks}, publisherplace = {Dubrovnik, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font