ࡱ> CbjbjWW .j55%<<8Ls?*@"bbb===<<<<<<<$UAD8<1=====<bb ?*111=Dbb<1=<11r44b; OD-4<7?<s?4,?E0?E4?E4==1=====<<0===s?====?E=========< \:Magnetic, geochemical and mineralogical properties of sediments from clean karstic and flysch rivers of Croatia and Slovenia Stanislav Fran iakovi-Bilinski1*, Robert Scholger2, Halka Bilinski1 and Darko Tibljaa3 1Institute Ruer Boakovi, Division for marine and environmental research, POB 180, 10002 Zagreb, Croatia 2Montanuniversitt Leoben, Department of applied geosciences and geophysics, Peter-Tunner-Strae 25, 8700 Leoben, Austria 3University of Zagreb, Faculty of Science, Department of Geology, Institute of Mineralogy and Petrology, Horvatovac 95, 10000 Zagreb, Croatia *Corresponding author, E-mail:  HYPERLINK "mailto:francis@irb.hr" francis@irb.hr; Phone: +385 1 4561081; Fax: +385 1 4680242 Abstract The aim of the present work was to investigate links between the low-field magnetic susceptibility (MS) of sediments from several Croatian and Slovenian rivers and their chemical and mineral composition, as well as possible anthropogenic influence. MS measurements are a fast and simple method, which serves as a proxy for the estimation of pollution in different environmental systems. As far as we know, it is the first time applied on stream sediments in the studied region. The investigated rivers are predominantly unpolluted rivers from Croatian and Slovenian karstic and flysch areas, which belong to the Adriatic or the Black Sea watersheds: the Dragonja, the Mirna, the Raaa, the Ri~ana, the Reka, the Rak, the Cerknianica, the Unec and the Ljubljanica rivers. It was assumed, that due to their mostly unpolluted status, they could serve as a database for natural MS background values for this region. For comparison, several rivers and a lake from the Celje old metallurgic industrial area (Slovenia) were also investigated: the Savinja, the Hudinja, the Voglajna and the Slivniko Lake. They form a sub-basin of the Sava River drainage basin. Sediments of the clean karstic and flysch rivers showed extremely low MS values, with mass susceptibility values ranging from 0.5*10-7 to 5.11*10-7 m3/kg, and isothermal remanent magnetism (IRM) values ranging from 0.7 to 7.88 A/m. In the Celje industrial area, river sediments showed much higher MS values, with mass susceptibility values ranging from 1.31*10-7 to 38.3*10-7 m3/kg and IRM values ranging from 0.91 to 100.42 A/m. The highest MS value was found in the Voglajna River at Teharje-tore, a point which showed a significant number of anomalies of toxic metals in earlier investigations. Semiquantitative determination of relations between grain-size and concentration of magnetite was performed using the Thompson-Oldfield method. XRD mineralogical analysis showed that sediments of the Celje area have mostly quartz as major mineral, with relatively small amount of carbonate minerals, while in sediments of karstic rivers carbonate minerals prevail. Statistically significant correlations were obtained between MS and Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Ba in the Slovenian karstic region, and between MS and Cr, Fe, Co, Ni and Zn in flysch drainage basins. On the contrary, no correlation of MS and Hg content was obtained. Keywords karstic and flysch rivers; Croatia; Slovenia; magnetic susceptibility; trace elements; heavy metals; sediments; mineralogy; anthropogenic influence 1. Introduction Magnetic susceptibility is the ease with which material can be magnetized in an external magnetic field. Determination of volume susceptibility is a cheap and fast method and it is possible to use it as an indicator of anthropogenic contamination with certain metals. The development of magnetic measurements application in environmental research begun in the eighth decade of the twentieth century. The application of this method to sediments was initiated by Thompson and Oldfield (1986) and a whole series of authors have been using it for different investigations in geosciences. Shortly after that, the application of magnetic measurements as proxies and indicators for expensive and complicated chemical analyses became one of the main research topics in contamination research (Oldfield et al., 1985; Strzyszcz,1993; Strzyszcz et al.,1996; Hay et al., 1997; Heller et al., 1998; Scholger, 1998; Plater et al., 1998; Kapi ka et al., 1999; Petrovsky et al., 2000; Hanesch and Scholger, 2002; Hanesch et al., 2003; Boyko et al., 2004; Fialova et al.,2006; Shoumkova et al., 2006; Botsou et al., 2011 Novakova et al. 2012). Investigations performed in industrial areas have also shown, that the distribution of magnetic susceptibility in soils is closely connected with deposition of industrial dust and, that magnetic measurements could be used as a method for detection of heavy metals in soils. A detailed overview of magnetic monitoring methods in pollutant research was given by Petrovsk and Ellwood (1999). The majority of the authors are in accordance with the conclusion, that this method is promising and confident for the discrimination of polluted areas. Because this method is fast and cheap, it is possible to handle a dense network of sampling sites and construct magnetic susceptibility maps, which enable an efficient selection of the most important points on which chemical analyses will also be performed. This procedure cuts significantly the costs of heavy metal screening in the environment and contributes significantly to the quality of environmental research. Until recently, magnetic susceptibility measurements of stream sediments have not been used with the purpose of environmental quality assessment in Croatia. First such measurements in Croatia have been performed by Fran iakovi-Bilinski (2008a) on the samples from the Kupa River watershed. The area with the highest values of magnetic susceptibility was found to be the lower flow of the Mre~nica River. It was shown that this anomaly originates from uncareful coal burning products disposal. Increased values of magnetic susceptibility were observed in stream sediments of the upper flow of the Dobra River, which are suggested not to be of anthropogenic influence (Fran iakovi et al., 2014). To our knowledge, in Slovenia there were no investigations of magnetic susceptibility in surface sediments to assess the quality of rivers. The aim of the present work was to perform measurements of the low-field magnetic susceptibility (MS) of stream sediments from several Croatian and Slovenian rivers and to find links with their chemical and mineral composition, as well as with possible anthropogenic influence. The results could serve as a database for natural MS background values for two presumably relatively clean regions (Slovenian karstic rivers; flysch and alogene rivers of Croatia and Slovenia) in comparison with those from the Celje industrial region with intensive metal manufacturing processes. 2. Study area The study area is composed of three regions in Slovenia and Croatia (Figure 1). The first, with 16 sampling points, is the Celje industrial region (Slovenia) drained by the Voglajna, Hudinja and Savinja rivers (Figure 2). The second (Figure 3) is a karstic region in Slovenia with karstic rivers (the Rak, Cerkninica, Unec and Ljubljanica) belonging to the Sava River drainage basin, represented by 8 sampling stations. The third region comprises drainage basins of rivers that flow through flysch (the Reka from Brkini Hills with 8 sampling stations; the Ri~ana, Dragonja, Mirna and Raaa from Istria, with 23 sampling points) (Figure 4). a) Details about the study area of the Savinja, Voglajna and Hudinja drainage basins are given in Fran iakovi-Bilinski et al. (2006). This area is located in the eastern part of Slovenia. The studied area represents a young tectonic basin, which is filled with Quaternary deposits of the Savinja, Voglajna and Hudinja rivers. In the northern part, there are Pleistocene clays, quartz gravel and sand. In the SE part, Miocene sand, sandstone, marly limestone and lithothamnian limestone are also exposed as part of the Celje syncline. The oldest rocks (Triassic dolomite and limestone, as well as andesite and their tuff and Carboniferous and Permian shale, sandstone and conglomerate) crop out in the southern part. These rivers were poorly studied in terms of geochemistry; even though they are significantly affected by metallurgical industry around Celje. b) The investigated system of Slovenian karstic rivers stretches from the Cerkniko Lake in the south to the Ljubljanica River in the north. The most distant source branch of this system is the Trbuhovica, which springs on Prezid Polje in Croatia. Two main branches which are feeding the periodic Cerkniako Lake are the Obrh and Str~en. The Cerkniako Lake has an area of 38 km2 when it is full, the maximal depth is 10 m, and it is 10.4 km long and 4.7 km broad. The Rak River drains the lake area and it flows through the famous Rakov kocjan valley and canyon and then underground until the Planinska Jama cave. Within this cave it unifies with the Pivka River and reaches the surface as Unica. This river sinks and, when it again reaches the surface near Vrhnika at Mo ilnik spring, it has the name Ljubljanica. It flows to Ljubljana, where it inflows the Sava River. The hydrology of this karstic system is explained by distribution of areas built of the Triassic semi-permeable dolomites and permeable Jurassic and Cretaceous limestones (Gams, 2004). Ljubljanica River was described earlier by Fran iakovi-Bilinski (2008b). c) Flysch and alogene rivers of Croatia and Slovenia which were studied within this paper are located in the Istria peninsula, the Raaa and Mirna in its Croatian part, the Dragonja at or close to the Croatian-Slovenian border and the Ri~ana in Slovenian part. Another studied river (the Reka) is located in nearby Brkini hills flysch area in SW Slovenia. The flysch of the Istrian peninsula is one of the three main flysch areas in the outer Dinarides, the other two occurring in the northern Dalmatian and Split areas. The flysch units in Istria have been considered as Middle to Late Eocene in age (Babi et al., 2007). From these rivers, Raaa was studied earlier by Sondi et al. (1994; 1995), with respect to trace metal transport and sedimentation processes. Some results of contamination status of the Ri~ana, Dragonja, Mirna and Raaa Rivers were earlier reported in two brief conference papers by Fran iakovi-Bilinski et al. (2003; 2007). 3. Materials and methods 3.1. Sampling and sample preparation Sampling of 57 stream sediments sites from Croatian and Slovenian rivers was performed during three years (2001-2003), in the frame of a Croatian-Slovenian bilateral project, in which geochemistry and mineralogy of river sediments was studied. Sediments were air dried and dry sieved (standard sieves, Fritsch, Germany). Sieved samples were pulverized using a mortar grinder Pulverisette 2 (Fritsch, Germany). Samples were used for different purposes within the above mentioned project and the rest material was stored for possible further research in the future. In the present paper, their magnetic susceptibility and isothermal remanent magnetism (IRM) were measured for the first time. 3.2. Measurements of magnetic susceptibility and isothermal remanent magnetisation For measurements of mass susceptibility ( in m3/ kg), samples were placed in a standard cylindrical sample container (10 cm3) and weighed. A multifunction kappa-bridge MFK1-FA (AGICO, Brno, Czech Republic, Field 200 A/m, Frequency 976 Hz) was used. The procedure was earlier described in Hanesch et al. (2003). A direct magnetic field of 1T was introduced, using a Pulse Magnetizer Model 660 (2G Enterprises, Ca, USA). After the magnetisation step, IRM was measured on a DC-Squid Magnetometer (2G Enterprises, Ca, USA). 3.3. Mineralogical analysis using XRD The mineral composition of the sediments (fraction <63 m) was determined by X-ray powder diffraction using a Philips X-Pert MPD diffractometer (Cu tube, graphite monochromator, generator settings: 40 kV, 40 mA, range scanned 4-63 2). Crystalline phases were identified by comparison with Powder Diffraction File (1997) using the computer program X Pert High score (Philips, 2001). 3.4. ICP-MS analysis of sediment fraction <63 m Chemical analysis was performed by ACTLABS commercial laboratories, Ontario, Canada, in the fraction <63 m, using ICP-MS (Inductively Coupled Plasma Mass Spectroscopy) and Ultratrace 2 software. The procedure was as follows: 0.5 g of sample was dissolved in aqua regia at 90 C in a microwave digestion unit. The solution was diluted and analyzed using a Perkin Elmer SCIEX ELAN 6100 ICP-MS instrument. The reference materials ( USGS GXR-1, GXR-2, GXR-4 and GXR-6) were analyzed at the beginning and after analysis of each series of samples. Although this digestion is not total, its use is justified because the international standard methods for determining action limits are based on aqua regia leach (Salminen and Tarvainen, 1997). 3.5 Statistical procedure for determination of anomalous values Basic statistical parameters and correlation analysis were performed using STATISTICA 8.0. (StatSoft, Inc., 2007). Anomalous values of magnetic susceptibility and IRM were obtained from the experimental data in Table 1 using the two dimensional scatter box diagrams (Tukey, 1977; Reimann et al., 2005). The same procedure was used for assessing anomalous concentrations of toxic elements in Region 2 and Region 3 from the data in Table 2 while anomalies for the elements in Region 1, determined using same statistical approach, are taken from Fran iakovi-Bilinski et al. (2006). 4. Results 4.1. Measurements of magnetic susceptibility and isothermal remanent magnetisation (IRM) Results of the measurements of mass susceptibility and isothermal remanent magnetisation (IRM) are divided in three regions/datasets and, for each of them, mean values for every measured parameter are presented (Table 1). As expected, the highest values of all parameters are observed in the Celje industrial region, with mass susceptibility values ranging from 1.31*10-7 to 38.3*10-7 m3/kg and IRM values ranging from 0.91 to 100.42 A/m. Sediments of the clean karstic and of flysch and alogene rivers showed extremely low MS values, with mass susceptibility values ranging from 0.5*10-7 to 5.11*10-7 m3/kg and IRM values ranging from 0.7 to 7.88 A/m. Rivers from this clean region were divided into two groups; those from Slovenian karst showed a bit higher values than flysch and alogene rivers of Croatia and Slovenia. Semiquantitative determination of relations between grain-size and concentration of magnetite was performed using the Thompson-Oldfield method (1986) (Figure 5). In this diagram, magnetic volume susceptibility (abbreviation: MS, dimensionless in SI units) is plotted vs. IRM-intensity (A/m). The diagram shows, that the concentration of magnetic phases varies largely between rivers. The values of magnetite concentrations spread approximately from 0.003% to 0.3%. In region 3 the values are the lowest and in region 1 are the highest. Magnetic grain sizes range between 1 and 16 m in most samples of regions 1 and 2. Most samples from region 3 have grain sizes above 16 m. The use of magnetic susceptibility vs. IRM as magnetic grain size indicator rests on many assumptions, therefore the results can be considered only as tentative ones. 4.2. Mineral composition of stream sediments The mineral composition of river sediments (fraction <63 m) of the Celje industrial region was earlier presented in details (see Table 1, Fran iakovi-Bilinski et al., 2006). Quartz was found as a major mineral in all sediment samples. Among other major minerals, albite was found in locations 1 and 3; muscovite in locations 2, 79, and 82; calcite in locations 4, 5, 6 and 82; dolomite in locations 6 and 81. Depending on locations there are several minor minerals and also several trace minerals, some of which contain Fe- ion in the structure. In stream sediments from the Slovenian karstic region quartz, calcite and dolomite are present in different proportions. Quartz predominates in samples 8, 9, 38, 39 and 17; calcite predominates in samples 58 and 10; while dolomite predominates in sample 11. There are also some traces of feldspars, muscovite and of chlorite. In all samples from the Reka River, quartz is a dominant constituent. Feldspar (presumably albite ordered) is present as the second abundant mineral in samples 53 and 54 and as a minor constituent in samples 12, 15, 16 and 56. Calcite is present in all samples as minor component, except in sample 12, where it is not present. In sediments of the Mirna, Raaa, Ri~ana and Dragonja Rivers (Figure 4) quartz and calcite are the major minerals with slightly different proportions. Feldspars and muscovite are present as trace minerals. Magnetite was not detected by XRD in any sample, which can be attributed to the generally low concentrations indicated by MS measurements. 4.3. Elemental composition of sediments Concentrations of 38 elements were determined in sediments of regions 2 and 3 in the present work. From them only concentrations of 12 potentially toxic elements (Fe, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Cd, Ba, Pb and Hg), which are included in the list of existing sediment criteria issued by SMSP and FALCONBRIDGE NC SAS (2005) are shown in Table 2, in addition to macrocomponents (Mg, Al, Ca, S and K). For concentrations of elements and their anomalies in the Celje Region, we refer to our earlier paper (Fran iakovi-Bilinski et al. 2006), which showed that stream sediments of the Celje region are still contaminated, although industrial pollution decreased during the last decades. The most significant contaminants in the Celje region are Zn and Cd. In two locations within the town of Celje, serious toxic effects are possible due to several elements. In other locations, only minor toxic effects are possible. Descriptive statistics was used to obtain basic statistical parameters shown in Tables 3a and 3b. For each element the values are given for the arithmetic mean, geometric mean, median, minimal and maximal concentrations, variance, standard deviation, skewness and kurtosis. The value for the arithmetic mean standard deviation can be considered as baseline value for each element studied here. Comparison of mean concentrations of potentially toxic elements with sediment quality criteria (SMSP and FALCONBRIDGE NC SAS, 2005) is presented in Tables 4a and 4b, for regions 2 and 3, respectively. In Region 2 mean concentrations of Cu and Zn are below the level for the lowest toxic effects. Mean concentrations of Cr, Fe, Ni, As, Cd, Pb and of Hg are above the values that could cause the lowest toxic effects. Mean concentrations of Mn and of Ba are above the value capable for causing significant toxic effects. In Region 3 mean concentrations of Cd and Pb are below the level for the lowest toxic effects. Mean concentrations of Cr, Mn, Fe, Cu, Zn and of As are above the values causing the lowest toxic effects. Mean concentrations of Ni, Ba and of Hg are above the values causing significant toxic effects. The highest values of Ni and of Hg are observed in the Reka River. Increased concentrations of Cu in samples 53, 54 and 56 could be due to intensive fruit growing in this region (field observation of D.T., one of authors of the current paper). Concentrations of total Hg are elevated in several samples: in samples 38, 39 (Region 2) and in 13, 15, 53 and 54 of the Reka River, the values are higher than 2 ppm, the value reported as capable of causing significant toxic effects. The values of Hg concentrations are the highest in sample 15 (Region 3) and in sample 38 (Region 2). These concentrations of total Hg are almost comparable with Hg concentrations of lower stretch of the Idrijca, and So a Rivers (see Table 2 and Table 4, in Fran iakovi-Bilinski et al., 2005). Anomalies in concentrations of selected elements and of magnetic susceptibility in sediments of regions 1-3 were determined by the boxplot method (Table 5). (In other sediments, which are not included in Table 5, anomalies were not found. Comparison of the measured element concentrations with the available quality criteria for fresh water sediments (SMSP and FALCONBRIDGE NC SAS 2005) indicate that some of the investigated sediments contain several elements in concentrations that could have the lowest (e.g. Cr, Fe, Ni) or even significant toxic effects (Ba, Hg) i.e. such comparison indicate possible pollution of investigated sediments. But careful analysis of such elevated concentrations for several elements show that they are most probably the result of natural processes and that they do not indicate any pollution. A typical example is Ba in sediments from the flysch region rivers. Sandstones from this region contain from 50 to 3600 ppm of Ba, the highest values have been observed in the samples from the Pazin flysch basin (Mikes et al., 2006). These values are in accordance with the fact that authigenic barite is one of the most abundant heavy minerals found in marls of the central Istria flysch (Magdaleni, 1972). The fact that sediment samples with the highest recorded Ba concentrations (99, 100, 107) were taken precisely in the streams which drain areas in which marls and sandstones contain authigenic barite support the conclusion that Ba is naturally present in investigated sediments. Similar conclusions could be reached for Cr whose concentrations are lower in stream sediments than in flysch sandstones. The highest measured Cr concentrations are in the Reka river sediments that drain the Brkini area in which sandstones generally have higher Cr values. Cr is concentrated in chromium spinel, a key mineral in ophiolitc detritus which was more abundant in Brkini sandstones than in sandstones from other NW External Dinarides flysch basins (Mikes et al., 2006). Elevated concentrations of Ni, another element that indicate ultramafic-mafic detritus origin, in the Reka river sediments are also in accordance with that. The only element which has elevated concentrations in some sediment samples, which could not be explained by natural processes, is mercury. Analyses of two marls collected upstream of Ilirska Bistrica showed that their Hg content is very low: 90 and 25 ppb, respectively. Apart from that there is no available data on Hg concentration in source rocks, but in the soils from the surroundings of nearby town Rijeka values higher than 170 ppb were only rarely observed, and the median value for Croatian soils is 60 ppb (Halami & Miko, 2009). Therefore it can be presumed that some of the highest measured values (i.e. sample 15) indicate some pollution especially due the fact that sediments taken closer to the river sources (i.e. sample 12) have significantly lower Hg concentrations. Possibly the elevated concentrations are the result of agriculture, in which it is used among other ways as a foliar spray against plant diseases. Such conclusions raise a question about usage of the available quality criteria for fresh water sediments (SMSP and FALCONBRIDGE NC SAS 2005). In our case obviously unpolluted river sediments, and even rocks from which they have been derived have some element concentrations that are supposed to have possibility to cause even significant toxic effect. Use of such criteria which are based merely on (questionable) concentrations and not taking in account the bioavailability of elements should be done with judiciousness. 5. Discussion of magnetic properties of sediments in context of their geochemical and mineral composition In the current discussion we refer to our earlier papers (Fran iakovi-Bilinski et al., 2003; Fran iakovi-Bilinski et al., 2006 and Fran iakovi-Bilinski et al., 2007), in which geochemistry and mineralogy of here studied sediments was described. Earlier investigations in the Celje area (Fran iakovi-Bilinski et al., 2006) described in details the contamination of river sediments with following toxic metals for which are given their maximal measured values: Zn (1040 gg-1), Cd (7 gg-1), Cu (138 gg-1), Ni (82 gg-1), Pb (133 gg-1), Ag (3 gg-1), Hg (1086 ngg-1) and As (30 gg-1). An extreme MS value is observed in Voglajna River at Teharje-tore, the point which showed significant number of anomalies of toxic metals (Mo, Sb, P, Cr, Cu, Re, Pb, Bi, W). Another outlier MS value was measured in Voglajna River at Celje at the point which showed numerous anomalies (B, Na, Co, Zn, Sc, Zr, Cd, In, Pb, Tl) XRD mineralogical analysis showed that sediments of the Celje area have mostly quartz as major mineral, with relatively small amount of carbonate minerals, while in sediments of karstic rivers carbonate minerals prevail. According to Fran iakovi-Bilinski et al. (2007) high concentration of toxic elements Cd, Sb, Pb and Hg in sample 18 in upper flow of the Ri~ana River could be of concern, therefore more sampling upstream can be suggested. Magnetic susceptibility of these samples show values only slightly above the mean values for the investigated flysch and alogene rivers. Therefore, low value of MS does not always mean that there is no contamination with some elements. Raa, Mirna and Dragonja represent clean environments according to most of MS results. But, sample 112 in the lower flow of the Raa River showed increased value of IRM (6.40 A/m), what could be due to the influence of nearby Plomin coal power-plant. Coal combustion products which enter river systems are known to cause increased magnetic susceptibility of river sediments, what was investigated in details on the case of Mre~nica River, Croatia (Fran iakovi-Bilinski, 2008 a). Correlation analysis is presented in Table 6a (Region 2) and in Table 6b (Region3). Significant correlations were obtained between MS and Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Ba in Region 2; between MS and Cr, Fe, Co, Ni and Zn in Region 3. No correlation of MS and Hg was obtained; therefore the magnetic method is not applicable to detect all pollution sources, particularly of mercury. In the polluted Celje industrial region, correlations of MS and IRM were obtained only with Cr, Cu and Pb. 6. Conclusions Magnetic susceptibility measurements as fast and simple method for estimation of pollution with numerous toxic elements in different environmental systems were for the first time applied on stream sediments from several karstic and flysch rivers of Croatia and Slovenia. The presented results led to following conclusions: The highest values of all measured parameters are present in the Celje industrial region with mass susceptibility values ranging from 1.31*10-7 to 38.3*10-7 m3/kg and IRM values ranging from 0.91 to 100.42 A/m; Sediments of the clean karstic and flysch rivers showed extremely low MS values, ranging from 0.5*10-7 to 5.11*10-7 m3/kg and IRM values ranging from 0.7 to 7.88 A/m. Th studied rivers were divided into two groups, the Slovenian karstic rivers (Region 2) showed slightly higher MS values than flysch and alogene rivers of Croatia and Slovenia (Region 3); The results could serve as a database for the pollution state of sediments with respect to toxic elements, although not with Hg. Significant correlations were obtained between MS and Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Ba in Region 2; between MS and Cr, Fe, Co, Ni and Zn in Region 3. No correlation of MS and Hg was obtained; therefore magnetic method is not applicable to detect all pollution sources in the area, particularly of mercury. Acknowledgements Field work was organized within the Croatian-Slovenian bilateral project (2001-2003), principal investigators H. Bilinski and D. Hl: > D ` b " B C ﵦzk_z_P_P_Pz_h-kh-kCJOJQJaJh-kCJOJQJaJhrh{&CJOJQJaJh-kCJH*OJQJaJ"h-kh-k5CJH*OJQJaJh-k5CJOJQJaJh-k5CJH*OJQJaJh-kh-k5CJOJQJaJhV5CJOJQJaJh-khs5CJOJQJaJhs5CJOJQJaJh-kh-k5CJOJQJaJ B K ZF#67@ $da$gdU $da$gdXA $da$gdeR $da$gdV $dha$gd{& $da$gdV 2 J K j k ~ ƺƄs_L<hpCJOJQJaJmH sH $hphpCJOJQJaJmH sH 'hxh{&5CJOJQJaJmH sH !hV5CJOJQJaJmH sH  h[h0JCJOJQJaJ+jh[hCJOJQJUaJhrhCJOJQJaJhCJOJQJaJjhCJOJQJUaJhrh{&CJOJQJaJh-kCJOJQJaJh-kh-kCJOJQJaJ  8 = y     * W ` c j k r ଢ଼}}m]MhCJOJQJaJmH sH hy CCJOJQJaJmH sH h<>CJOJQJaJmH sH hBCJOJQJaJmH sH h(eCJOJQJaJmH sH hDYCJOJQJaJmH sH heRCJOJQJaJmH sH $hphpCJOJQJaJmH sH h>CJOJQJaJmH sH hpCJOJQJaJmH sH hCJOJQJaJmH sH  Jnv (4<FNhp)+48NUv~hr4CJOJQJaJmH sH hnLCJOJQJaJmH sH h'pCCJOJQJaJmH sH hy CCJOJQJaJmH sH hCJOJQJaJmH sH hDYCJOJQJaJmH sH hZCJOJQJaJmH sH h>CJOJQJaJmH sH .  !&+YZаАp\p\Lh<>CJOJQJaJmH sH 'h!h[3CJH*OJQJaJmH sH h[3CJOJQJaJmH sH hAtCJOJQJaJmH sH h&w#CJOJQJaJmH sH h{&CJOJQJaJmH sH hiCJOJQJaJmH sH h'pCCJOJQJaJmH sH hnLCJOJQJaJmH sH h>CJOJQJaJmH sH h?CJOJQJaJmH sH ^_ξξww޾gWGhy#CJOJQJaJmH sH hr4CJOJQJaJmH sH hpCJOJQJaJmH sH 'h!h[3CJH*OJQJaJmH sH h[3CJOJQJaJmH sH hK|CJOJQJaJmH sH $hf rhf rCJOJQJaJmH sH hAtCJOJQJaJmH sH hj?CJOJQJaJmH sH h<>CJOJQJaJmH sH !h<>CJH*OJQJaJmH sH 'OQdf#'@Dagz~"#1p`Ph[NCJOJQJaJmH sH h'pCCJOJQJaJmH sH hUCJOJQJaJmH sH h"CJOJQJaJmH sH h?CJOJQJaJmH sH hr4CJOJQJaJmH sH hK|CJOJQJaJmH sH hy#CJOJQJaJmH sH hdCJOJQJaJmH sH hj?CJOJQJaJmH sH h_uCJOJQJaJmH sH 12'3567@bcͪtdtddTdth>CJOJQJaJmH sH h{&CJOJQJaJmH sH h.CJOJQJaJmH sH *hxh{&56CJOJQJaJmH sH hHCJOJQJaJmH sH hXACJOJQJaJmH sH $hsBhu2CJOJQJaJmH sH h[NCJOJQJaJmH sH $hXAhu2CJOJQJaJmH sH hu2CJOJQJaJmH sH ?PQX]'OUV`dmnw|Aλ{h{hUU$h{h=@SCJOJQJaJmH sH $h{hv CJOJQJaJmH sH hv CJOJQJaJmH sH h./CJOJQJaJmH sH h=@SCJOJQJaJmH sH h7CJOJQJaJmH sH $h{h{CJOJQJaJmH sH !htQD5CJOJQJaJmH sH !h#b5CJOJQJaJmH sH htQDCJOJQJaJmH sH  %S&((((H,0 9@@ $da$gdsBO$dC$Eƀga$gd{ $da$gd{ $da$gdUABCGoj,0B^`  ͺͺͺͺݪݪwdTA$hQzCh<>CJOJQJaJmH sH h<>CJOJQJaJmH sH $hQzChl^CJOJQJaJmH sH hGmCJOJQJaJmH sH h78DCJOJQJaJmH sH $hY.hl^CJOJQJaJmH sH hl^CJOJQJaJmH sH $h{h=@SCJOJQJaJmH sH h=@SCJOJQJaJmH sH $h{h{CJOJQJaJmH sH h`CJOJQJaJmH sH !)67?KMNO`aͺͪwwwwdwTDDh_UCJOJQJaJmH sH h6CJOJQJaJmH sH $h{hz0CJOJQJaJmH sH hz0CJOJQJaJmH sH h78DCJOJQJaJmH sH $h{h{CJOJQJaJmH sH h=@SCJOJQJaJmH sH $h6Ihl^CJOJQJaJmH sH hl^CJOJQJaJmH sH $hQzCh<>CJOJQJaJmH sH h<>CJOJQJaJmH sH GYZ%t}~ >!@!T!!!!!!!""0"ͺͺtdddThzCJOJQJaJmH sH h`CJOJQJaJmH sH $h(uh(uCJOJQJaJmH sH h$ CJOJQJaJmH sH $h{h(uCJOJQJaJmH sH h(uCJOJQJaJmH sH $h{hC%CJOJQJaJmH sH hC%CJOJQJaJmH sH h_UCJOJQJaJmH sH $h{h{CJOJQJaJmH sH 0"8"d"f"""""""# #(#:#D#j###P$V$$$$$$%R%T%%%%%ͭݚ݊݊z݊zjzZzh*CJOJQJaJmH sH haCJOJQJaJmH sH h38XCJOJQJaJmH sH h2VCJOJQJaJmH sH $h{h`CJOJQJaJmH sH hBqlCJOJQJaJmH sH h?CJOJQJaJmH sH h`CJOJQJaJmH sH $h{h{CJOJQJaJmH sH hCJOJQJaJmH sH %%%%%%%%&&1&R&S&n&u&&&&' ''i'n'Р}jZJZj:jZ:hqCJOJQJaJmH sH hACJOJQJaJmH sH hX,wCJOJQJaJmH sH $hphX,wCJOJQJaJmH sH $hGmhX,wCJOJQJaJmH sH h!CJOJQJaJmH sH hVCJOJQJaJmH sH hPTCJOJQJaJmH sH huCJOJQJaJmH sH hBqlCJOJQJaJmH sH haCJOJQJaJmH sH h#bCJOJQJaJmH sH n'''''''''''')(=(C(K(c(h(r((((((аp`АааP<'h*h:5CJOJQJaJmH sH h{CJOJQJaJmH sH hCJOJQJaJmH sH hCJOJQJaJmH sH h-(CJOJQJaJmH sH h9iCJOJQJaJmH sH hKCJOJQJaJmH sH h!CJOJQJaJmH sH h1CJOJQJaJmH sH hHICJOJQJaJmH sH hqCJOJQJaJmH sH hX,wCJOJQJaJmH sH ((((((())))))))))))<,>,@, - -L/̼vfVFfh MCJOJQJaJmH sH h6gCJOJQJaJmH sH h!>CJOJQJaJmH sH $hsBh_NCJOJQJaJmH sH hk'CJOJQJaJmH sH hCJOJQJaJmH sH $hsBhsBCJOJQJaJmH sH h_NCJOJQJaJmH sH !hS5CJOJQJaJmH sH !h725CJOJQJaJmH sH !hX,w5CJOJQJaJmH sH L/l/m/y//1080=0@0A00033'4-4N5O5h6j66666B7нsccSc@$hsBhCJOJQJaJmH sH hCJOJQJaJmH sH hN2RCJOJQJaJmH sH $hsBhcCJOJQJaJmH sH 'hchsBCJH*OJQJaJmH sH $hsBhCJOJQJaJmH sH hCJOJQJaJmH sH $hsBhsBCJOJQJaJmH sH hCJOJQJaJmH sH hcCJOJQJaJmH sH hOCJOJQJaJmH sH B7D7R789 99999929J999(;8;j=n====ʺzjZJ7$hI%hsBCJOJQJaJmH sH hlz#CJOJQJaJmH sH hoCJOJQJaJmH sH h`CJOJQJaJmH sH hLCJOJQJaJmH sH hj{CJOJQJaJmH sH hzCJOJQJaJmH sH h%XCJOJQJaJmH sH hhECJOJQJaJmH sH $hsBhsBCJOJQJaJmH sH $hsBh' RCJOJQJaJmH sH h' RCJOJQJaJmH sH ==Z>p>r>t>?f?n???f@h@@@@@@@@@AA୽wfUfUfUA'hKhK5CJOJQJaJmH sH !hK5CJOJQJaJmH sH !hH5CJOJQJaJmH sH $hsBhZsNCJOJQJaJmH sH $hsBhsBCJOJQJaJmH sH h78DCJOJQJaJmH sH h/CJOJQJaJmH sH h`CJOJQJaJmH sH $h @hTCJOJQJaJmH sH hTCJOJQJaJmH sH h%XCJOJQJaJmH sH @@@AnDpDEFGGGJJMcNdNNQQQQQRR $da$gd[$a$gdF $da$gd{ $da$gd72A A$AFAHATAAAAA B B2B3B5BjBkBvBBBCRCXCnCrCwCCCCCC0DjDlDͽݭ݊zzzjzjZjh%UZCJOJQJaJmH sH hOnSCJOJQJaJmH sH hCJOJQJaJmH sH $h`h`CJOJQJaJmH sH hoQCJOJQJaJmH sH heCJOJQJaJmH sH h`CJOJQJaJmH sH h oSCJOJQJaJmH sH hKCJOJQJaJmH sH $hKhKCJOJQJaJmH sH !lDnDpDDEEtEvEFFFFZFyFFFFFFϾscSc@0h72CJOJQJaJmH sH $hE`3hzqCJOJQJaJmH sH h^CJOJQJaJmH sH hzqCJOJQJaJmH sH hWCJOJQJaJmH sH 'h&hzqCJH*OJQJaJmH sH $hzqhzqCJOJQJaJmH sH 'hFhH5CJOJQJaJmH sH !hW;n5CJOJQJaJmH sH !hH5CJOJQJaJmH sH hHCJOJQJaJmH sH hZsNCJOJQJaJmH sH FF5G9GGG^GbGcGGGGGGGGGJJKRLRQRRR]RaRRRRRRRRRRRRɸueueueuUEUEUEhsCJOJQJaJmH sH h- CJOJQJaJmH sH h/$CJOJQJaJmH sH h;iCJOJQJaJmH sH !h;i5CJOJQJaJmH sH !h/$5CJOJQJaJmH sH !hV@5CJOJQJaJmH sH !h:u5CJOJQJaJmH sH !hS5CJOJQJaJmH sH $h[hHCJOJQJaJmH sH $hP^ hcqCJOJQJaJmH sH RRSS$S%S.S=SASfSoSrSvSSSSSSSSSSSSSSSS T,T/T5TBTnTsTнЙЙxhXhXhhLCJOJQJaJmH sH h:uCJOJQJaJmH sH !h+ZQCJH*OJQJaJmH sH h+ZQCJOJQJaJmH sH 'h*hsCJH*OJQJaJmH sH hOPCJOJQJaJmH sH $hBhsCJOJQJaJmH sH hsCJOJQJaJmH sH hBCJOJQJaJmH sH h- CJOJQJaJmH sH "sTTTTTTTTTTU%UUUUUVVVV V(V༫𛋛xhXH8h)CJOJQJaJmH sH hZJZxZZ[ [[[[[[ \ \0\\ʺʪzjZJZ:Z:h>yCJOJQJaJmH sH hy^CJOJQJaJmH sH hyCJOJQJaJmH sH hVCJOJQJaJmH sH h6kCJOJQJaJmH sH hECJOJQJaJmH sH hvCJOJQJaJmH sH hMCJOJQJaJmH sH %u^^^^^ ______(_)_9_B_Q_T_]_y_z_}_____F`Аp`ppPPhF<CJOJQJaJmH sH hf^CJOJQJaJmH sH h$CJOJQJaJmH sH hLCJOJQJaJmH sH h)CJOJQJaJmH sH h JCJOJQJaJmH sH hMCJOJQJaJmH sH hTCJOJQJaJmH sH hCJOJQJaJmH sH hiECJOJQJaJmH sH h^CJOJQJaJmH sH F`H`X`Z`\````jalaa@bAbBbjbbbbbbbb cl\IlIl9lhf CJOJQJaJmH sH $hFhAUCJOJQJaJmH sH h`CJOJQJaJmH sH $hFhf^CJOJQJaJmH sH !hE 5CJOJQJaJmH sH hF<CJOJQJaJmH sH hdHCJOJQJaJmH sH hMCJOJQJaJmH sH h^CJOJQJaJmH sH h0CJOJQJaJmH sH hf^CJOJQJaJmH sH h CJOJQJaJmH sH  cCcDcOcccccccccc4d\dddxdddddݺ͗wgTAT$hJ^hJ^CJOJQJaJmH sH $hJ^h=+UCJOJQJaJmH sH he~CJOJQJaJmH sH hOuXCJOJQJaJmH sH hjCJOJQJaJmH sH h=+UCJOJQJaJmH sH $hxh=+UCJOJQJaJmH sH $hFh=+UCJOJQJaJmH sH h`CJOJQJaJmH sH $hFhf^CJOJQJaJmH sH h pCJOJQJaJmH sH ddddee ee(eN>N.hNCJOJQJaJmH sH h#CJOJQJaJmH sH hNl|CJOJQJaJmH sH $he~hNl|CJOJQJaJmH sH hQCJOJQJaJmH sH $hb)NhSCJOJQJaJmH sH $he~hb)NCJOJQJaJmH sH $he~h)CJOJQJaJmH sH $he~h;DCJOJQJaJmH sH $hb)Nh6CJOJQJaJmH sH h)CJOJQJaJmH sH h6CJOJQJaJmH sH ()*Na VX^`hпyiygyyWG7GW7h|0CJOJQJaJmH sH h6CJOJQJaJmH sH h5efCJOJQJaJmH sH UhzCJOJQJaJmH sH hRCJOJQJaJmH sH !hCJOJQJaJmH sH hV@CJOJQJaJmH sH h|0CJOJQJaJmH sH h6CJOJQJaJmH sH *L  V  ` $da$gdV4b $da$gd $da$gd$q $da$gd @gd( $da$gd{$  da$gd6RVZl~L          ͽͽͽqͽaQAh`,CJOJQJaJmH sH h$qCJOJQJaJmH sH h>CJOJQJaJmH sH $h`h$qCJOJQJaJmH sH $hY.hY.CJOJQJaJmH sH $hQzChQzCCJOJQJaJmH sH $h @h @CJOJQJaJmH sH hV4bCJOJQJaJmH sH hpECJOJQJaJmH sH !h{5CJOJQJaJmH sH !h65CJOJQJaJmH sH   @ F T V      z      26FXZݽͭͭͭwggggWGh70CJOJQJaJmH sH h1'SCJOJQJaJmH sH hCJOJQJaJmH sH $h`h1'SCJOJQJaJmH sH hO^CJOJQJaJmH sH $hchcCJOJQJaJmH sH hcCJOJQJaJmH sH hpECJOJQJaJmH sH hV4bCJOJQJaJmH sH h$qCJOJQJaJmH sH $h$qh$qCJOJQJaJmH sH 8hlnpt,0BFV\hjLpЩ𙩙ІvvvffSfSf$hhCJOJQJaJmH sH hCJOJQJaJmH sH hpECJOJQJaJmH sH $h`hCJOJQJaJmH sH hCJOJQJaJmH sH $h1'Sh1'SCJOJQJaJmH sH 'h70h70CJH*OJQJaJmH sH h1'SCJOJQJaJmH sH h70CJOJQJaJmH sH hoCJOJQJaJmH sH  8tzHV$^`hlnzʺݺݚtdhCJOJQJaJmH sH $h`hCJOJQJaJmH sH $hV4bhV4bCJOJQJaJmH sH hV4bCJOJQJaJmH sH hpECJOJQJaJmH sH hFCJOJQJaJmH sH $h`hCJOJQJaJmH sH hCJOJQJaJmH sH $hhCJOJQJaJmH sH z "*,`b028>BVʺݪݪݗݪ݄tt݄ttdQdd$h`h$qCJOJQJaJmH sH h-eCJOJQJaJmH sH hLCJOJQJaJmH sH $hLhLCJOJQJaJmH sH $h$qh$qCJOJQJaJmH sH h$qCJOJQJaJmH sH hCJOJQJaJmH sH $hhCJOJQJaJmH sH h'~CJOJQJaJmH sH $hhCJOJQJaJmH sH 2p$!#$&<(()*+b-/21<3x6678: $da$gd\\ $da$gd @ $da$gd $da$gd$q $da$gdLVXlp $(:>BTVb PTnp~ͺͪͺ$hhCJOJQJaJmH sH hLCJOJQJaJmH sH hpCJOJQJaJmH sH $h`h$qCJOJQJaJmH sH $h$qh$qCJOJQJaJmH sH h-eCJOJQJaJmH sH h$qCJOJQJaJmH sH .8 : F  "!$!L!!###############$$$$$$*$ͺtaaNN$h$qh$qCJOJQJaJmH sH $h$qhLCJOJQJaJmH sH $hLhLCJOJQJaJmH sH hLCJOJQJaJmH sH $h`h$qCJOJQJaJmH sH h6ICJOJQJaJmH sH $h6Ih6ICJOJQJaJmH sH hCJOJQJaJmH sH $hhCJOJQJaJmH sH h CJOJQJaJmH sH *$0$2$>$l$$$$$$$$$%B&&&<(J(L(N(V(X(((ͽͪtddQ$h[h[CJOJQJaJmH sH h[CJOJQJaJmH sH $hY.hY.CJOJQJaJmH sH h$qCJOJQJaJmH sH $h`hK7CJOJQJaJmH sH $h`h$qCJOJQJaJmH sH hK7CJOJQJaJmH sH $h$qh$qCJOJQJaJmH sH hLCJOJQJaJmH sH h CJOJQJaJmH sH (((((((((()) )))) ),).))))*** *"**++++++ͺݺͺttdh\\CJOJQJaJmH sH $h\\h\\CJOJQJaJmH sH $h[h[CJOJQJaJmH sH h[CJOJQJaJmH sH hCJOJQJaJmH sH $h$qh$qCJOJQJaJmH sH hPCJOJQJaJmH sH h CJOJQJaJmH sH $hPhPCJOJQJaJmH sH !++,,,,,-`-b-r-v-x--.//21<33455X5Z5f56v6x6ݺݺݗ݄݄q^KKKKK$h @h @CJOJQJaJmH sH $hxhxCJOJQJaJmH sH $hQzChQzCCJOJQJaJmH sH $h$qh$qCJOJQJaJmH sH hPCJOJQJaJmH sH $h`h$qCJOJQJaJmH sH $h[h[CJOJQJaJmH sH h[CJOJQJaJmH sH hCJOJQJaJmH sH $h`h[CJOJQJaJmH sH x6664767L7N7Z7r888888888899::&:*:.:B:D:P::::::;;N;P;ͽͪͪͽͽͽ͇͇ͪͪͪwd$h(h(CJOJQJaJmH sH h{CJOJQJaJmH sH h>ICJOJQJaJmH sH $h`h$qCJOJQJaJmH sH $h$qh$qCJOJQJaJmH sH h_CJOJQJaJmH sH hCJOJQJaJmH sH h\\CJOJQJaJmH sH $h\\h\\CJOJQJaJmH sH $::P;R;T;V;X;Z;\;^;`;b;d;f;h;j;l;n;p;r;t;v;x;z;|;;; $da$gdqb $da$gd$qP;\;`;b;d;|;;;;;;;;$<<<<=====0>>>????{g{g{g{g{V!h0Z5CJOJQJaJmH sH 'h Mh M5CJOJQJaJmH sH !h M5CJOJQJaJmH sH 'hk'hk'5CJOJQJaJmH sH !hk'5CJOJQJaJmH sH hk'CJOJQJaJmH sH hCJOJQJaJmH sH hqbhOCJOJQJaJhu=CJOJQJaJmH sH hCCJOJQJaJmH sH ;&<(<j=l=??@@BBBBBBBBBBBBC C CCCh]hgd &`#$gdW $da$gd$q?(?|???@@@@@@@ A"A$A&AAABBBBBBBBBBBBBBBBCCɸwswswswsicic_icih|0 h|00Jjh|00JUhDIfjhDIfU'hk'h)5CJOJQJaJmH sH 'h)h)5CJOJQJaJmH sH !h1&5CJOJQJaJmH sH !h)5CJOJQJaJmH sH !h M5CJOJQJaJmH sH !h0Z5CJOJQJaJmH sH 'h0Zh0Z5CJOJQJaJmH sH #CCCC CCC'hk'h)5CJOJQJaJmH sH hDIfh|0 h|00Jjh|00JUhJ^0JmHnHu,1h. A!"#$% DyK francis@irb.hryK Dmailto:francis@irb.hryX;H,]ą'c^ 2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmHnHsHtHV`V {&Normal d$CJOJPJQJ_HaJmHsHtH DA`D Default Paragraph FontRiR  Table Normal4 l4a (k (No List 6U`6 {& Hyperlink >*B*ph4 @4  Footer  p#.)@.  Page NumberH@"H V Balloon TextCJOJQJ^JaJB'`1B K|Comment ReferenceCJaJD@BD K| Comment TextCJaJmHsHJoQJ K|Comment Text CharOJPJQJtH @j@AB@ K|Comment Subject5\VoqV K|Comment Subject Char5OJPJQJ\tH P`Pu20Revision$CJOJPJQJ_HaJmHsHtH PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3N)cbJ uV4(Tn 7_?m-ٛ{UBwznʜ"Z xJZp; {/<P;,)''KQk5qpN8KGbe Sd̛\17 pa>SR! 3K4'+rzQ TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn R!y+Un;*&/HrT >>\ t=.Tġ S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv u"xA@T_q64)kڬuV7 t '%;i9s9x,ڎ-45xd8?ǘd/Y|t &LILJ`& -Gt/PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 0_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] Ѝj $$$' 1A0"%n'(L/B7=AlDF>??@@AAA!A#A)A.A6A/C1CSCUCCCPDUD}DDDDZE_EEEGGHH[I]III&J(JKKELILMMMMMMFQLQQQQQ4R>RRRRRgSqS/T5TtTxTTTUU?UEU{UUUUVVVWLXSXVXZX\\\\\\x]}]]]o^q^^^^^T_V___________/`4`````2a4a^ada!b'b,b3bbbbbbb c$cccGdOd`dudeeffjflf\gcghgngh hhhhh>i@i|iiiiiijj7l?l|llllllFm[mmn;n@nPnUnVnXnZnjnnnsnwn~nnnnnnoo o oooo o%o&o/o0o9o:oBoQoWo[ofokouoyoooo pp'p,p0p8puBuIukuquuuvvvv$v'v(v4v?vGvJvUvWv_vvvvvvvvvvvwwwwwwwwwwwwx&x*x2xxxxxuyzyyy\zezizpz{{ {{{{"{,{{{{{|| |)|C|H|Z|b||||||||||||||||||}}}}}~~ 8@DM҃ۃ@EFIX]  $׆܆<@KRsy{)/0:>Gfk257BDHMX֋܋ )/19;@EIڌ΍э|~ABJK v;r0x0x1~1GGHH2J4JMQZQ,b:btl{lllll ooCqqqQrsrs5ss?vIvvvxwwyy2|5|:||%~&~ˀ̀;WẐyчɈ̈;=̉ۉ܉ \e̋Ջ΍э333333333333333333333333333333333333333333jr9s9FAGACC^DnD{D}DDDDDuNvNU΍эjr9s9FAGACC^DnD{D}DDDDDuNvNU΍эt¼^`OJPJQJ^Jo(-^`OJQJ^Jo(hHopp^p`OJQJo(hH@ @ ^@ `OJQJo(hH^`OJQJ^Jo(hHo^`OJQJo(hH^`OJQJo(hH^`OJQJ^Jo(hHoPP^P`OJQJo(hHtu5,W*=ePjKv~-WTnpdOP P^ b^ f m v Y &^TXSvVXBw3z0FVW 1EdNUg^ip~)mK,ko6Z(7dE!).#o%zq1 ?.?j6@J@-i@!AB`By C:CYC'pCrCQzCF3D78DtQDrD=E #F-GHHtHI6I>I^J^O^r^]__`g'`BaFaV4bGIbRcde(e-e3eDIf5efZ g6gigyugxgah=hWoh9i;iuiP~j-k6k=k\ekgkBqlnm$rmW;no'o;oOap$qRq{qf r qr|r@t:u(u_u*0vX,w|wx>yzzf\z\kzK|N|V|Nl|G ~'~]d~5R1At{~bnV@~uAQ2Mgn>>`N;D pz.> Ll^qb'fE Z? Us:Lt]pE_6B @W?CVi@g`t * NY2U<|/XA`eeHV 5[PNtT=@RFHL!j{iEc,F<$^06Gm ge~#bV_,EKPS}<Ma@VCT:y^qs6cq=.NI%4RXv>Oop=O;Flb!FY~( J%9 ;V)=f^pBS`O./j?dHcY u2 $ ) ;A Ev#CpO;p_gaiy-(yR\\xg Z4+KJ- 1&{+:hEiVNtsBHIoQq\wmx%-_r4GJ[ipnLV`jpFwKSi^a9NGJaV?7K|Uk'`,0j&l"E' )l)KL!>@FFFF,!"]#]$]&]'])]+],K.K/K0K4K5u<u=ABDEMNRSWY\^`acdHlЍ@ @8@ "$L@*,\@2h@68<>@D@HJ@P@Z@`@d@n@t@z@ @@@Unknown GeophysikG*Ax Times New Roman5Symbol3. *Cx Arial7.@Calibri5. .[`)Tahoma?= * Courier New;WingdingsA$BCambria Math"q'#G$x H$x Hq24bb3qHP ?a*2!xx xOverview of hydrogeological, geochemical and mineralogical investigations of karstic aquifers of the Biokovo Mt, CroatiaStasko Stanislav Oh+'0(8DX lx    |Overview of hydrogeological, geochemical and mineralogical investigations of karstic aquifers of the Biokovo Mt, CroatiaStasko Normal.dotm Stanislav18Microsoft Office Word@n@Ɖ+@P=@,[OD $x՜.+,D՜.+,8 hp|  irbHb yOverview of hydrogeological, geochemical and mineralogical investigations of karstic aquifers of the Biokovo Mt, CroatiayOverview of hydrogeological, geochemical and mineralogical investigations of karstic aquifers of the Biokovo Mt, Croatia TitleTitel 8@ _PID_HLINKSAd#mailto:francis@irb.hr  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F z= ODData 1TableOEWordDocument .jSummaryInformation(DocumentSummaryInformation8MsoDataStore E1 OD; ODD2UGEWNLWWHHODA==2 E1 OD; ODItem  PropertiesUCompObj r   F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q