Pregled bibliografske jedinice broj: 68929
Computation of power series expansions in homogenisation of nonlinear equations
Computation of power series expansions in homogenisation of nonlinear equations // Applied mathematics and computation / Rogina, Mladen ; Hari, Vjeran ; Limić, Nedžad ; Tutek, Zvonimir (ur.).
Zagreb: Matematički odsjek Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, 2001. str. 69-80 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 68929 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Computation of power series expansions in homogenisation of nonlinear equations
Autori
Antonić, Nenad ; Lazar, Martin
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Applied mathematics and computation
/ Rogina, Mladen ; Hari, Vjeran ; Limić, Nedžad ; Tutek, Zvonimir - Zagreb : Matematički odsjek Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, 2001, 69-80
Skup
Applied mathematics and computation
Mjesto i datum
Dubrovnik, Hrvatska, 13.09.1999. - 18.09.1999
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
nonlocal effects in homogenisation; graph; $H$-convergence; perturbation
Sažetak
In the theory of homogenisation it is of particular interest to determine the classes of problems which are stable on taking the homogenisation limit. A notable situation where the limit enlarges the class of original problems is known as memory (nonlocal) effects. A number of results in that direction has been obtained for linear problems. Tartar initiated the study of effective equation corresponding to nonlinear equation: $$\partial_t u_n + a_n u_n^2 = f\ . $$ Significant progress has been hampered by the complexity of required computations needed in order to obtain the terms in power-series expansion. We propose a method which overcomes that difficulty by introducing graphs representing the domain of integration of the integrals in each term. The graphs are relatively simple, it is easy to calculate with them and they give us a clear image of the form of each term. The method allows us to discuss the form of the effective equation and the convergence of power-series expansions.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037015
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb