Pregled bibliografske jedinice broj: 688246
Quasilinear elliptic equations with positive exponent on the gradient
Quasilinear elliptic equations with positive exponent on the gradient // Glasnik matematički, 48 (2013), 68; 391-402 doi:10.3336/gm.48.2.11 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 688246 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Quasilinear elliptic equations with positive exponent on the gradient
Autori
Kraljević, Jadranka ; Žubrinić, Darko
Izvornik
Glasnik matematički (0017-095X) 48
(2013), 68;
391-402
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
quasilinear elliptic ; positive strong solution ; !-solution ; critical exponent ; existence ; nonexistence ; weak solution
Sažetak
We study the existence and nonexistence of positive, spherically symmetric solutions of a quasilinear elliptic equation (1.1) involving p-Laplace operator, with an arbitrary positive growth rate $e_0$ on the gradient on the right-hand side. We show that $e_0 = p − 1$ is the critical exponent: for $e_0 < p−1$ there exists a strong solution for any choice of the coefficients, which is a known result, while for $e_0 > p − 1$ we have existence-nonexistence splitting of the coefficients $\tilde f_0$ and $\tilde g_0$. The elliptic problem is studied by relating it to the corresponding singular ODE of the first order. We give sufficient conditions for a strong radial solution to be the weak solution. We also examined when -solutions of (1.1), defined in Definition 2.3, are weak solutions. We found conditions under which strong solutions are weak solutions in the critical case of $e_0 = p − 1$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Ekonomski fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts