Pregled bibliografske jedinice broj: 68662
Analysis of Low Rank Transform Domain Adaptive Filtering Algorithm
Analysis of Low Rank Transform Domain Adaptive Filtering Algorithm // Proceedings of the International Conference on Acoustics, Speech and Signal Processing ICASSP '99 / Rodriguez, Jeffrey (ur.).
Piscataway (NJ): Institute of Electrical and Electronics Engineers (IEEE), 1999. str. 1869-1872 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 68662 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis of Low Rank Transform Domain Adaptive Filtering Algorithm
Autori
Raghothaman, Balaji ; Linebarger, Darel ; Begušić, Dinko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the International Conference on Acoustics, Speech and Signal Processing ICASSP '99
/ Rodriguez, Jeffrey - Piscataway (NJ) : Institute of Electrical and Electronics Engineers (IEEE), 1999, 1869-1872
Skup
1999 IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP '99
Mjesto i datum
Phoenix (AZ), Sjedinjene Američke Države, 15.03.1999. - 19.03.1999
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
adaptive filtering; transform domain; low rank; SVD; DFT; Affine Projection
Sažetak
The paper analyzes an SVD based low rank transform domain adaptive filtering algorithm and proves that it performs better than Normalized LMS. The method extracts an underdetermined solution from an overdetermined least squares problem, using a part of the unitary transformation formed by the right singular vectors of the data matrix. The aim is to get as close to the solution of an overdetermined system as possible, using an underdetermined system. Previous work based on the same framework, but with the DFT as the transformation, has shown considerable improvement in performance over conventional time domain methods like NLMS and Affine Projection. The analysis of the SVD-based variant helps us to understand the convergence behaviour of the DFT-based low complexity method. We prove that the SVD-based method gives a lower residual than NLMS. Simulations confirm the theoretical results.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
023023
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Profili:
Dinko Begušić
(autor)