Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 680668

Accelerating Mean Shift Image Segmentation with IFGT on Massively Parallel GPU


Sirotković, Jadran; Dujmić, Hrvoje; Papić, Vladan
Accelerating Mean Shift Image Segmentation with IFGT on Massively Parallel GPU // mipro 2013 / Petar Biljanović (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2013. str. 301-306 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 680668 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Accelerating Mean Shift Image Segmentation with IFGT on Massively Parallel GPU

Autori
Sirotković, Jadran ; Dujmić, Hrvoje ; Papić, Vladan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Mipro 2013 / Petar Biljanović - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2013, 301-306

ISBN
978-953-233-074-8

Skup
Mipro 2013

Mjesto i datum
Opatija, Hrvatska, 2013

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
mean shift; IFGT; parallel GPU; image segmentation

Sažetak
Mean shift algorithm is a popular technique in many machine vision applications including image segmentation. Main drawback of the original algorithm is its quadratic computational complexity, the problem approached with many acceleration methods developed by researchers so far. One of the most effective is usage of the Improved Fast Gauss Transformation (IFGT) to accelerate Gaussian summations of the mean shift, resulting with linear computational complexity. Despite such advances, mean shift segmentation on larger images can still be too expensive for time critical applications. However, recent rapid increase in the performance of general purpose graphic processing unit (GPGPU) hardware has opened opportunity for significant acceleration of the algorithms by parallel execution. This paper introduces first parallel implementation of IFGT- MS segmentor based on many core GPGPU platform. The emphasis is placed on adaptation of the core algorithm to efficiently exploit benefits of underlying GPU hardware architecture. Numerical experiments have demonstrated considerably faster segmentation execution compared with alternative CPU and GPU based mean shift variants.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
023-0231924-1661 - ICT sustavi i usluge temeljeni na integraciji informacija (Rožić, Nikola, MZOS ) ( CroRIS)
177-0232006-1662 - Računalni vid u identifikaciji kinematike sportskih aktivnosti

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Hrvoje Dujmić (autor)

Avatar Url Vladan Papić (autor)


Citiraj ovu publikaciju:

Sirotković, Jadran; Dujmić, Hrvoje; Papić, Vladan
Accelerating Mean Shift Image Segmentation with IFGT on Massively Parallel GPU // mipro 2013 / Petar Biljanović (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2013. str. 301-306 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Sirotković, J., Dujmić, H. & Papić, V. (2013) Accelerating Mean Shift Image Segmentation with IFGT on Massively Parallel GPU. U: Petar Biljanović (ur.)mipro 2013.
@article{article, author = {Sirotkovi\'{c}, Jadran and Dujmi\'{c}, Hrvoje and Papi\'{c}, Vladan}, year = {2013}, pages = {301-306}, keywords = {mean shift, IFGT, parallel GPU, image segmentation}, isbn = {978-953-233-074-8}, title = {Accelerating Mean Shift Image Segmentation with IFGT on Massively Parallel GPU}, keyword = {mean shift, IFGT, parallel GPU, image segmentation}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Sirotkovi\'{c}, Jadran and Dujmi\'{c}, Hrvoje and Papi\'{c}, Vladan}, year = {2013}, pages = {301-306}, keywords = {mean shift, IFGT, parallel GPU, image segmentation}, isbn = {978-953-233-074-8}, title = {Accelerating Mean Shift Image Segmentation with IFGT on Massively Parallel GPU}, keyword = {mean shift, IFGT, parallel GPU, image segmentation}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font