Pregled bibliografske jedinice broj: 68007
Extensions of Hilbert C*-modules
Extensions of Hilbert C*-modules // Houston journal of mathematics, 30 (2004), 2; 537-558 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 68007 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Extensions of Hilbert C*-modules
Autori
Bakić, Damir ; Guljaš, Boris
Izvornik
Houston journal of mathematics (0362-1588) 30
(2004), 2;
537-558
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
C*-algebra ; Hilbert C*-module ; adjointable operator
Sažetak
The paper begins a study of extensions of Hilbert \cez-modules. An (essential) extension of a Hilbert \cez-module $V$ over a \cez-algebra \as is defined as a quadruple $(W, \bss, \Phi, \varphi)$ consisting of a Hilbert \bss-module $W$, an injective morphism of \cez-algebras $\varphi : \ass \rightarrow \bss$ such that $\mbox{; ; ; Im}; ; ; \, \varphi$ is an (essential) ideal in \bss, and a morphism of Hilbert \cez-modules $\Phi : V \rightarrow W$ such that $\mbox{; ; ; Im}; ; ; \, \Phi$ is an ideal submodule of $W$. This leads to the exact sequence $0 \rightarrow V \rightarrow W \rightarrow W/\mbox{; ; ; Im}; ; ; \, \Phi \rightarrow 0$ of Hilbert \cez-modules. It is proved that for each Hilbert \ass-module $V$ there exists the largest essential extension $(V_d, \ogrr(\ass), \Gamma, \gamma)$ such that for any other essential extension $(W, \bss, \Phi, \varphi, )$ of $V$ one can embed $W$ into $V_d$. It is also shown that the \cez-algebras of all adjointable operators acting on $V$ and $V_d$, respectively, are isomorphic.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet