Pregled bibliografske jedinice broj: 677945
Predicting More from Less: Synergies of Learning
Predicting More from Less: Synergies of Learning // Proc. of 2nd International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering / unknown (ur.).
New York (NY): Institute of Electrical and Electronics Engineers (IEEE), 2013. str. 42-48 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 677945 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Predicting More from Less: Synergies of Learning
Autori
Kocaguneli, Ekrem ; Čukić, Bojan ; Lu, Huihua
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Izvornik
Proc. of 2nd International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering
/ Unknown - New York (NY) : Institute of Electrical and Electronics Engineers (IEEE), 2013, 42-48
ISBN
978-1-4673-6437-9
Skup
2nd International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering
Mjesto i datum
San Francisco (CA), Sjedinjene Američke Države, 25.05.2013. - 26.05.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
none
Sažetak
Thanks to the ever increasing importance of project data, its collection has been one of the primary focuses of software organizations. Data collection activities have resulted in the availability of massive amounts of data through software data repositories. This is great news for the predictive modeling research in software engineering. However, widely used supervised methods for predictive modeling require labeled data that is relevant to the local context of a project. This requirement cannot be met by many of the available data sets, introducing new challenges for software engineering research. How to transfer data between different contexts? How to handle insufficient number of labeled instances? In this position paper, we investigate synergies between different learning methods (transfer, semi-supervised and active learning) which may overcome these challenges.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
165-0362980-2002 - Postupci raspoređivanja u samoodrživim raspodijeljenim računalnim sustavima (Martinović, Goran, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Profili:
Bojan Čukić
(autor)