Pregled bibliografske jedinice broj: 673270
Automated Duplicate Bug Report Classification Using Subsequence Matching
Automated Duplicate Bug Report Classification Using Subsequence Matching // 14th International IEEE Symposium on High-Assurance Systems Engineering, HASE 2012
New York (NY): Institute of Electrical and Electronics Engineers (IEEE), 2012. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 673270 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Automated Duplicate Bug Report Classification Using Subsequence Matching
Autori
Banerjee, Sean ; Cukić, Bojan ; Adjeroh, Donald A.
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
14th International IEEE Symposium on High-Assurance Systems Engineering, HASE 2012
/ - New York (NY) : Institute of Electrical and Electronics Engineers (IEEE), 2012
ISBN
978-1-4673-4742-6
Skup
14th International IEEE Symposium on High-Assurance Systems Engineering, HASE 2012
Mjesto i datum
Omaha (NE), Sjedinjene Američke Države, 25.10.2012. - 27.10.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Documentation; Duplicate Bug Reports; Experimentation; String Algorithms; Verification
Sažetak
The use of open bug tracking repositories like Bugzilla is common in many software applications. They allow developers, testers and users the ability to report problems associated with the system and track resolution status. Open and democratic reporting tools, however, face one major challenge: users can, and often do, submit reports describing the same problem. Research in duplicate report detection has primarily focused on word frequency based similarity measures paying little regard to the context or structure of the reporting language. Thus, in large repositories, reports describing different issues may be marked as duplicates due to the frequent use of common words. In this paper, we present Factor LCS, a methodology which utilizes common sequence matching for duplicate report detection. We demonstrate the approach by analyzing the complete Fire fox bug repository up until March 2012 as well as a smaller subset of Eclipse dataset from January 1, 2008 to December 31, 2008. We achieve a duplicate recall rate above 70% with Fire fox, which exceeds the results reported on smaller subsets of the same repository.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
165-0362980-2002 - Postupci raspoređivanja u samoodrživim raspodijeljenim računalnim sustavima (Martinović, Goran, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Profili:
Bojan Čukić
(autor)