ࡱ> 0bjbjVV &<<BY G|Y$ (!!!$$ $XXXXXXX$N[]lX0&$$"0&0&X!!~nY///0&L!!X/0&X//TJV!pQz|)U"kXY0YV\^`+\^DV\^V$0%"/3%O%$$$XX>-$$$Y0&0&0&0&\^$$$$$$$$$ :MULTIOBJECTIVE OPTIMIZATION  POSIBILITY FOR PRODUCTION IMPROVEMENT Predrag OSI, Dragutin LISJAK, Valentina LATINFSB, Department of Industrial Engineering, University of Zagreb, Ivana Lu ia 5, Zagreb, Croatia predrag.cosic@fsb.hr,  HYPERLINK "mailto:dragutin.lisjak@fsb.hr" dragutin.lisjak@fsb.hr, valentina.latin@fsb.hr Abstract: In the previous research strong correlation was discovered between the features of the product drawing and production time, which has resulted with 8 regression equations. They were realized using stepwise multiple linear regressions. Since the optimization of these regression equations did not fully define the most frequent requirements, multiobjective optimization was applied. The applied criteria included: minimum production time, maximum work costs/total costs ratio for a group of workpieces. The group was created using specific classifiers that defined similar workpieces. A STEP model with seven decision variables within a group was applied, and the groups with a high index of determination were selected. Independent values that maximize the work costs/total costs ratio and minimize production times were determined. The obtained regression equations of time production parts and work costs/total costs ratio are included in the objective functions to reduce production time and increasing, work costs/total costs at the same time. The values of decision variables that minimize production time and maximize work costs/total costs ratio were determined. As the solution of the described problem, multicriteria interactive STEP method was applied. Key words: stepwise multiple linear regression, multiobjective optimization, STEP method INTRODUCTION Our numerous experiences and experience of others as well, and following of economic trends in Croatia and wider have motivated us to start research in this area. Since a considerable number of research works and papers are dealing with optimization of technological parameters, we have decided to focus our attention on the relationship between product features (geometry, complexity, quantity,..) and production times and costs [1,2,3,4]. It has been proved that it is possible to make estimation of production time applying classification, group technology, stepwise multiple linear regression as the basis for accepting or rejecting of orders, based on 2D [1, 2] drawings, and the set basis for automatic retrieval of features from the background of 3D objects (CAD: Pro/E, CATIA) and their transfer to regression models [5]. Of course, certain constraints have been set: application of standardized production times from technical documentation or estimations made using CAM software (CATIA, PRO/E, CamWorks); type of production equipment/technological documentation determines whether it will be single- or low-batch production. Initial steps have been taken regarding medium-batch, large-batch or mass production. It has been assumed (relying on experience) that small companies (SMEs) in Croatia make decision about acceptance of production (based on customers design solution of the product, delivery deadlines and manufacturing costs imposed by the customer - PICOS concept) on the basis of free intuitive assessment due to the lack of time and experts. This often results in wrong estimates. If the optimization of regression curves is to be applied (independent variables - product features, dependent variable production time), it is hard to explain what it would mean for the minimum or maximum production time for a given group of products. The minimum production time could mean a higher productivity, but we do not know about the profit. The maximum production time could suggest that a higher occupancy of capacities may mean higher earnings, although it may not be so. This dual meaning has led us to introduce multiple objective optimizations for a new class of variables that differently classify our products. A response variable (dependent variable) can assume several meanings: maximum profit per product, minimum delivery time (related to production time, and also to organizational waste of time, production balancing...), ratio of the production cost and the costs of product materials, ratio of the production cost and the ultimate production cost. Thus, the problem-solving approach has become more complex, and is no longer a mere result of intuition and heuristics, but more exact assessment of common optimum for more set criteria. THEORETICAL BACKGROUND TABLE 1. Minimum and maximum values of selected variablesPRODUCT TYPE - 41113min2.900.1001.0011.210.220.01320.0016.000.92max100.000.4005.0019.6312.500.39720.82033.001.00variablex1x2x3x4x5x6x7Z1Z2Variable descriptionWorkpiece outer diameterNarrowest tolerance of measuresScale of the drawingMaterial mass/strength ratioWall thickness/length ratioProduct surface areaMaterial massProduction timeRatio of Work costs/total costsunit of measuremmmmnumbernumbernumber104 mm2kgh/100number Used technological documentation for conventional machining tools (420 positions) is from INAS Company, a successful producer of machine tools in Croatia. The main grouping criteria were the features (geometrical, tolerance, hardness) from technical drawings and for each workpiece production time was used (technological and auxiliary time). It was found that the optimization of regression equations, in order to obtain minimum or maximum production times was insufficient with respect to the needs in real production. Thus, the aim was to obtain, by considering a series of regression equations, the optimum for multiobjective optimization (minimal production time, labor cost/material cost ratio or labor cost/total cost ratio for the selected group of products. As multiobjective optimization requires the same variables (x1, x7), it was necessary to make new grouping of the basic set (302 workpieces) using new classifiers. New classifiers were defined W (1-5), based on 5 basic features: W1-material: 1(polymers)-5(alloy steel), W2-shape: 1(rotational)-5(complex), W3- max. workpiece dimension: 1(mini V<120mm)-5(V>2000 mm), W4- complexity, BA number of dimension lines: 1(very simple BAd"5)-5(5  very complex BA>75), W5- treatment complexity: 1(very rough)-5) very fine). The conditions were defined based on the range of data about the number of dimension lines on the considered sample of 415 elements. A classifier that is being developed is based on 5 basic workpiece features. For the purpose of the research, a group of workpieces (W1-W5) 41113 was selected for further analysis. The code 41113 means: steel rotational small very simple commonly complex - workpieces. From the available database, the minimum and maximum values for independent variables, and dependent variable (Z1-production time), and derived variable Z2 was taken (Table 1.). Two regression equations, Z1 (production time) and Z2 (labor cost/total cost ratio), were selected. For them multiobjective optimization was also performed. In order to use the same types of variables, new grouping was made using specifically adjusted classifiers. Workpiece classification according to the criterion of complexity was done semi-automatically by setting conditions on certain features of drawings (basic roughness, the finest roughness requirement, the narrowest tolerance of measures, the narrowest tolerance of shape or position (geometry), number of all roughness and geometry requirements in the drawing. Each of these 6 criteria based on its specific conditions is assigned a value ranging from 1 to 5. The obtained result (Table 2.) is rounded to integer (e.g. 3.49 is W=3, and 3.51 is W=4), and this integer (in the range from 1 to 5) becomes complexity criterion coefficient (the fifth digit in the code). TABLE 2. Results of stepwise multiple linear regressionRegression StatisticsDependent variable -production time Z1Regression StatisticsDependent variable- work costs/ultimate costs ratio Z2Multiple R0.92212166Multiple R0.99207R Square0.85030835R Square0.984202Adjusted R Square0.78481826Adjusted R Square0.977291Standard Error4.09742037Standard Error0.002725Observations24.0Observations24.0Z1CoefficientsZ2CoefficientsIntercept-13.490042Intercept0.990439X Variable 10.86652065X Variable 10.000238X Variable 2-0.1993556X Variable 2-0.0039X Variable 30.75343156X Variable 30.00046X Variable 41.41593567X Variable 40.000794X Variable 5-1.8669075X Variable 5-0.00107X Variable 64.83640676X Variable 6-0.04466X Variable 7-51.274031X Variable 7-0.08551 THE MULTIOBJECTIVE MODEL The general multiobjective optimization problem with n decision variables, m constraints and p objectives is [6]:  EMBED Equation.DSMT4  (1)  EMBED Equation.DSMT4  (2) where Z(x1, x2,xn) is the multiobjective objective function and Z1( ), Z2( ), Zp( ), are the p individual objective functions. The step method [7] is based on a geometric notion of best, i.e., the minimum distance from an ideal solution, with modifications of this criterion derived from a decision maker's (DM) reactions to a generated solution. The method begins with the construction of a payoff table. The table is found by optimizing each of the p objectives individually, where the solution to the kth such individual optimization, called xk, gives by definition the maximum value for the kth objective, which is called Mk (i.e., Zk(xk) = Mk). The values of the other p - 1 objectives implied by xk are shown in the kth row of the payoff table. The payoff table is used to develop weights on the distance of a solution from the ideal solution. The step method employs the ideal solution, which has components Mk for k = 1, 2, ..., p. The ideal solution is generally infeasible. The , metric is used to measure distance from the ideal solution. The distance is scaled by a weight based on the range of objective Zk and the feasible region is allowed to change at each iteration of the algorithm. The basic problem in the step method is:  EMBED Equation.DSMT4  (3)  EMBED Equation.DSMT4  (4)  EMBED Equation.DSMT4  (5) where EMBED Equation.DSMT4  is the feasible region at the ith iteration and  EMBED Equation.DSMT4  is used to indicate that the original metric has been modified. Initially,  EMBED Equation.DSMT4 ; i.e., at the start of the algorithm the original feasible region is used in Eq.5 The weights  EMBED Equation.DSMT4 in Eq.4 are defined as:  EMBED Equation.DSMT4  (6) (6) (6)  EMBED Equation.DSMT4  (3)  EMBED Equation.DSMT4  (7) where nk is the minimum value for the kth objective; i.e. it is the smallest number in the kth column of the payoff table. The  EMBED Equation.DSMT4  are objective function coefficients, where it is assumed that each objective is linear. RESULTS On the basis of considerations of regression functions in previous sections, the problem of multiobjective optimization with minimization of the objective functions Z1 and Z2 with related constraints (Eq.8 to Eq.10) is defined. MinZ1=-13.49004192+0.866520652*x1 0.199355601*x2+0.753431562*x3+1.415935668*x4- 1.866907529*x5+4.836406757*x6-51.27403107*x7 (8) Min Z2= -0.990438731-0.000238475*x1+0.003897645*x2-0.00045981*x3-0.000794225*x4+ 0.0010738*x5+0.044664232*x6+0.085514412*x7 (9) x1 d" 100; x2 d" 0.4; x3 d" 5.0; x4 d" 19.63; x5 d" 12.50; x6 d" 0.3972; x7 d" 0.820 (10) In Eq.12 and Eq.13 Z1 represents variable T, and Z2 variable TU/TR. It should be mentioned that for the needs of consistency of the objective functions Z1 and Z2, for the objective function Z2 (Eq.9) the signs of the coefficients of variables and of the free member have been changed. The values of objective functions Z1 and Z2 in the extreme points of the set of possible solutions (feasible region) are given in Table 3. It is visible from the table that that there is no common set of points (x1,... x7) where both functions Z1 and Z2 have extreme (maximum) values, and thus the need for optimization of the given problem is justified. In accordance with Eq.6 and Eq.7 coefficients of equation Eq.4 are calculated as follow: 1=0.0197, 2=10.1974, 1=0.0019, 2=0.9981. The results of the first compromise solution given in Table 4. Since in the given problem there are two objective functions, it is necessary to make calculation of the second compromise solution. It has been decided that the previous value for M1 =73.1620 is to be reduced for the value of 33.1620, and thus the new value for M1=40. In accordance with Eq.6 and Eq.7 coefficients of equation Eq.4 are calculated as follow: 1=0.0199, 2=10.1974, 1=0.0019, 2=0.9981. The results of the second compromise solution given in Table 5. CONCLUSION The paper presents research on the development of a model for the estimation of production time for unit production or medium size batch production. As a result, eight regression equations were obtained. They show estimation of the production time as a function of geometrical and technological characteristics of a homogeneous group of products that were grouped using logical operators. Using specifically developed 5 classifiers at 5 levels, on the sample taken from the real production a homogenous group was formed which resulted in a regression equation showing dependence between production time (Z1) and 7 independent variables (x1,...x7). After that, the dependence between the work costs/total costs ratio (Z2) and independent variables (x1,...x7) is shown in another regression equation. The optimization part of the work considers the possibility of application of standard STEP method as multiobjective optimization approach in optimization of production problems, where the objective functions are obtained by regression model. The results obtained by application of STEP method indicate that its application is possible in the optimization of decision variables of the given objective functions. It is evident that the results of both objective functions are within the statistical range, i.e. Min Z1(x1,x7) = 19.0013 and Max Z2(x1, x7) = 0.9915, and thus it is not necessary to introduce a new payoff table to find a new compromise (feasible) solution. The following can be concluded: it is cost-effective to manufacture products with minimum outside diameter (x1), maximum (wider range) tolerance (x2), maximum scale (x3), maximum strength/mass ratio (x4), minimum of wall thickness/length ratio (x5), maximum product surface area (x6) and minimum mass of material (x7). TABLE 3. Values of the decision variables and the objective functionsExtreme pointDecision variablesObjective functionsx1x2x3x4x5x6x7Z1(x1...x7)Z2(x1...x7)A10000000073.1620-1.0143B00.400000-13.5698-0.9889C0050000-9.7229-0.9927D00019.6300014.3048-1.0060E000012.5000-36.8264-0.9770F000000.39720-11.5690-0.9727G0000000.820-55.5347-0.9203 TABLE 4. Results of the first compromise solutionx1=100; x2=0.4; x3=1.0; x4=12.0428; x5=12.5; x6=0.3962; x7=9999998E-4;  EMBED Equation.DSMT4 =7.128304E-2 Min Z1(x1,...x7) = 69.4161; Min Z2(x1,...x7) = -0.9915; Max Z2(x1,...x7) = 0.9915 TABLE 5. Results of the second compromise solutionx1= 3.37147; x2= 0.3711865; x3= 4.553035; x4= 18.92068; x5= 0.2269908; x6= 0.2826709; x7= 2.965111E-2;  EMBED Equation.DSMT4 = 7.682257E-2 Min Z1(x1,...x7)= 8:<ZB F n r     2 3 5 D E K L M ǯ|uul^h~h~6mHnHuh~h~CJ hMI6CJh(uhY0J6CJhJhY6CJjhY6CJUhJh~6CJ hY6CJh~h~56 h)5CJ hMI5CJh~h~5CJ hY5CJ h~h~h~h~5OJQJaJhYCJaJhYhYCJaJ$ L ugY!$$Ifa$gdMI!$$Ifa$gdX2kdD$$If%6a $@$Ifa$gd)2kd$$If%6a $Ifgd`) "$IfgdYL M N GHw$a$$gd-$ & F ^`a$$a$gdDM#xgd-gd-$a$2kd$$If%6aM N W X 6 A GHQSHK(23´󫢫zqzi]h-h-6nHtHh-h-6h.5CJaJh-5CJaJ h{?h-h{?h-B*CJphOh{?h-CJRHrh{?hbCJh{?h-CJhU+hh.5CJOJQJh5CJOJQJh-h-56 hE5hb hE5h- hU+hh.hU+hh.5hU+hh.CJOJQJ#cokd$$IfTl% %  t044 lalyt^z|T $$Ifa$gd^z| $^a$gd-$ & F ^`a$&'+abklmoprsuvxy{|~wxzh#/h#/CJ h( CJh#/$hU+hh.CJaJmH nH sH tH hE5h-6nHtHhE5h-6H*]nHtHhE5h-6]nHtHhE5hbnHtHhE5h-H*\nHtHhE5h-\nHtH hE5h-hE5h-nHtH- !&'+2Ff{ $$Ifa$gd^z|okdz$$IfTl% %  t044 lalyt^z|T28=CIPV\abknqtwz}$9Ff} Ff $$Ifa$gd^z|9GWwx %E)$gd#/$`gd#/$`gd- `FfFf $$Ifa$gd^z|&)4 2!=!a!""0"%^%a%b%%%%%%%&&*''((E)F)G)))){h3bh#/]nHtH hvh#/h#/h#/6h#/h( h#/h#/6CJh#/h#/CJnHtH)h#/h#/0J&CJaJfHq h#/h#/CJH*h#/h#/B*CJphOh#/h#/CJmH sH h#/h#/CJh#/hbCJ.E)F)G))))))))* *swkd$$IfTl0o? t0644 lap yt^z|T $$Ifa$gd^z|$`gd#/ )))))* * * *,*4*5*R*[*\****************+ ++-+6+7+\+e+f++++++++++,, ,E,N,O,t,},~,,,,,巯ޫh#/5CJOJQJh( h#/hvh#/5h3bh#/6]nHtHh3bh#/H*]nHtHh3bh#/nHtH hvh#/h3bh#/]nHtHh3bh#/H* h3bh#/< * **!*,*4*@4444 $$Ifa$gd^z|kds$$IfTl\0 ot/2j t0644 lap(yt^z|T4*5*>*I*R*[*@4444 $$Ifa$gd^z|kdu$$IfTl\0 ot/2j t0644 lap(yt^z|T[*\*n*y***@4444 $$Ifa$gd^z|kdw$$IfTl\0 ot/2j t0644 lap(yt^z|T******@4444 $$Ifa$gd^z|kdy$$IfTl\0 ot/2j t0644 lap(yt^z|T******@4444 $$Ifa$gd^z|kd{$$IfTl\0 ot/2j t0644 lap(yt^z|T****+ +@4444 $$Ifa$gd^z|kd}$$IfTl\0 ot/2j t0644 lap(yt^z|T +++#+-+6+@4444 $$Ifa$gd^z|kd$$IfTl\0 ot/2j t0644 lap(yt^z|T6+7+D+O+\+e+@4444 $$Ifa$gd^z|kd$$IfTl\0 ot/2j t0644 lap(yt^z|Te+f+s+~+++@4444 $$Ifa$gd^z|kd$$IfTl\0 ot/2j t0644 lap(yt^z|T++++++@4444 $$Ifa$gd^z|kd$$IfTl\0 ot/2j t0644 lap(yt^z|T++++++@4444 $$Ifa$gd^z|kd$$IfTl\0 ot/2j t0644 lap(yt^z|T+++ ,,,@4444 $$Ifa$gd^z|kd$$IfTl\0 ot/2j t0644 lap(yt^z|T, ,-,8,E,N,@4444 $$Ifa$gd^z|kd $$IfTl\0 ot/2j t0644 lap(yt^z|TN,O,\,g,t,},@4444 $$Ifa$gd^z|kd!$$IfTl\0 ot/2j t0644 lap(yt^z|T},~,,,,@777$`gd#/kd"$$IfTl\0 ot/2j t0644 lap(yt^z|T,,, -.-/-O-P-34 4@4`45R6r6f7g7 ' gd)$gd)'gd)$`gd#/$a$gd#/'gd#/ ' fgd)$gd#/$a$gd#/$ & F ^`a$gd#/,,,,,,, ---&-'-(-)-*---.-/-0-G-H-I-J-K-N-O-P-U-V-Ӭ~xm_VKhJJh)0J%CJhJJh)CJh)h#/5CJOJQJh)h#/CJRHp h#/RHpj'hOh#/EHRHpU#j O hOh#/UVnHtHh#/h)h#/CJ h)RHpj#hOh#/EHRHpU#j O hOh#/UVnHtHjhOh#/RHpUhOh#/RHph#/h#/6CJRHph#/h#/CJRHpV-Y-Z-_-`-a-b-k---------r/s/t///////////////000#0$0&00000000223334444ΫΞŊ'j O hJJh)CJUVnHtHjhJJh)CJUhJJh)0J%CJH*hJJh)0J%6CJH*hJJh)CJhJJh)0J%CJhJJhb0J%6CJhJJh)0J%6CJH*hJJh)0J%6CJ6444 4!48494:4;4@4A4X4Y4Z4[4`4e4f4}4~44444444ƷڣډzfUzIzhJJh)CJH*RHq!j5hJJh)CJEHRHqU'j{ O hJJh)CJUVnHtHjhJJh)CJRHqUhJJh)CJRHqj2hJJh)CJEHU'j O hJJh)CJUVnHtHj.hJJh)CJEHU'j O hJJh)CJUVnHtHhJJh)CJjhJJh)CJUj+hJJh)CJEHU44444455051525355555555555555tkWFkk!j>hJJh)CJEHRHpU'j1 O hJJh)CJUVnHtHhJJh)CJ!j;hJJh)CJEHRHpU'jD O hJJh)CJUVnHtHjhJJh)CJRHpUhJJh)CJRHphJJh)CJEHRHphJJh)CJRHqjhJJh)CJRHqU!j8hJJh)CJEHRHqU'jY O hJJh)CJUVnHtH5555551626I6J6K6L6R6S6j6k6l6m6q6s6z6{666666鲣鏀uj^jRDjRhJJh)6CJH*RHihJJh)6CJRHihJJh)CJH*RHihJJh)CJRHihJJh)0J%CJj1HhJJh)CJEHU'j O hJJh)CJUVnHtHj7EhJJh)CJEHU'j O hJJh)CJUVnHtHjAhJJh)CJEHU'j O hJJh)CJUVnHtHhJJh)CJjhJJh)CJU6666 7 7 7 77%7g7o788888888R8S8T8X8ʶ瘊}o_o}o_o}VIhJJh)CJmHsHhJJh)CJhJJh)6CJH*OJQJhJJh)6CJOJQJhJJh)CJOJQJhJJh)5CJOJQJhJJh)CJRHe$jLhJJh)6CJEHRHiU'j O hJJh)CJUVnHtHhJJh)6CJRHi jhJJh)6CJRHiUhJJh)CJRHihJJh)6CJH*RHig7o7S8T88849s9::=@BBBvJwJxJyJ$`gd( $ & F ^`a$gd( $gd( $`gd)'gd) $^`gd)$a$gd)$ & F ^`a$gd)X8Y8s8t8u888888888888888888888999999!9"9#9091929N9O9P9]9^9_9l9m9o9s9t9::::$:&:(:8:::<:P:R:T:h:j:l:::::::佳hJJh)6CJhJJh)CJhJJh)5CJH*mHsHhJJh)5CJmHsHhJJh)CJmHsHhJJh)CJH*mHsHE::::;; ;;(;;;;;;;<<<<<<<<<<<<D=E=F=G=K=L=M=e=f=g=l=m=n==\>^>`>n>r>t>v>>>>>>>>>>O@P@Q@Z@@@@@븮hJJh( 6CJH*hJJh( 6CJhJJh( CJhJJh)CJH*hJJh)CJRHhhJJh)CJRHnhJJh)6CJhJJh)CJhJJh)6CJH*@@BBBBBBBB*B.B0B2B@BDBFBHBVBBBBEEEEEEEEFFGFHFeFfFgFlFmFHHHHHHHHHHHHHHHHIIIIIؼ§§ؒ)h( h( 0J&CJaJfHq h( hb6CJh( 5CJOJQJ h( CJh( h( 6CJH*h( h( 6CJh( h( CJhJJh( 6CJH*hJJh( 6CJhJJh( CJ9IIIIIIIIIIIIIIJJJ+J,J-J.J/JNJOJPJQJRJpJqJrJsJuJyJJJJJJJJKKKKKK K K KKKKKKKKKK!K"K7K?KLhX h( 5hX h( H* hX h( hJJh( 6 h( CJh( h( CJH*h( h( 6CJH*h( h( 6CJ)h( h( 0J&CJaJfHq h( h( CJ>yJJJJJJJJJHikdO$$IfT4F9 t9    4ayt^z|TAkdO$$IfT99 t94ayt^z|T $$Ifa$gd^z|JJJKKK K KK$K $$Ifa$gd^z| $K%KkdP$$IfT4 de 9UQQ t9((((4ayt^z|T%K'K+K-K/K1K3K5K7K?KGK $$Ifa$gd^z| GKHKkdQ$$IfT de 9UQQ t9((((4ayt^z|THKJKLKPKRKTKVKXKZKcKkK $$Ifa$gd^z| kKlKkdR$$IfT de 9UQQ t9((((4ayt^z|TlKnKpKrKtKvKxKzK|KKK $$Ifa$gd^z| KKkdS$$IfT! de 9UQQ t9((((4ayt^z|TKKKKKKKKKKK $$Ifa$gd^z| KKkdU$$IfT de 9UQQ t9((((4ayt^z|TKKKKKKKKKKK $$Ifa$gd^z| KKkd/V$$IfT de 9UQQ t9((((4ayt^z|TKKKKKKKKKKK $$Ifa$gd^z| KKkdKW$$IfT! de 9UQQ t9((((4ayt^z|TKLLLL L L LLL$L $$Ifa$gd^z| L$L%L&L'LYLZL[L\LbLcLdLjLkLlLrLsLtL~LLLLLLLLLLLLLLLLLLLLLLLLɽ~rrh|uh( H*mHsHjYh|uh( EHUjH O h|uh( UVjh|uh( Uh|uh( mHsHh|uh( 5H*mHsHh|uh( 5mHsHh|uh( mH sH hJJh( 6h( 5CJOJQJh( h( CJ hX h( hX h( 5)$L%LkdgX$$IfT de 9UQQ t9((((4ayt^z|T%L&L'LYLZLLMMEIkd\$$IfTl t644 lalyt^z|T $Ifgd^z|IkdY$$IfTl t644 lalyt^z|T $$Ifa$gd^z|$a$gd( $`gd( LLLLLLLLLLMMM M MMMMMMMMPMQMRMSM_M`MaMoMpMqM~MMMMMMMMMMM˽㲤wlwlwlwlwlwlh%h( mHsHh%h( 5H*mHsHh%h( 5mHsHh%h( mH sH hJJh( 6h( h( 5CJOJQJhTh( mHsHh|uh( 5H*mHsHh|uh( 5mHsHh|uh( H*mHsHh|uh( mHsHh( mHsHh( 5mHsH*MMPMQMMM<zqqq $Ifgd^z|pkd!]$$IfTl6 t0644 layt^z|T $$Ifa$gd^z|$a$gd( MMMMMMMMMMMMMMMN "#()+-125;<=>?秵疵絋wmh( CJmH sH h( h( CJhTh( mHsHh[yh( mHsHh( mHsHh( 5mHsHUh%h( H*mHsHh%h( 5mHsHj]h%h( EHUjH O h%h( UVjh%h( Uh%h( mHsHh%h( 5H*mHsH'19.0013; Min Z2(x1,...x7)= -0.9915;Max Z2(x1,...x7)= 0.9915 REFERENCES [1] COSIC, P., ANTOLIC, D., MILIC, I. (2007), Web Oriented Sequence Operations., 19th International Conference on Production Research, ICPR-19, July 29-August 2, 2007, Valparaiso, Chile, on CD [2] ANTOLIC, D, (2007) Estimation of production times by regression models (in Croatian language), Masters thesis, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, FSB, Zagreb [3] VOLAREVIC, N., COSIC, P, (2005) Shape Complexity Measure Study, 16th International DAAAM Symposium, University of Rijeka, 19-22nd October 2005, Opatija, Croatia, pp. 375-376 [4] VOLAREVIC, N., COSIC, P., (2005), Improving Process Planning through Sequencing the Operations, 7th International conference on AMST '05 (Advanced Manufacturing Systems and Technology), Udine, Italy, pp. 337-345 [5] COSIC, P., MILCIC, D., KOVACIC, I. (2008), Production Time Estimation as the Part of Collaborative Virtual Manufacturing, International Centre for Innovation and Industrial Logistics -. ICIL 2008, International, March 9 15, 2008, Tel Aviv, Israel, pp. 93-100 [6] COHON, J. L., (1978), Multiobjective programming and planning, Academic Press, Inc. New York [7] BENAYOUN, R., deMONTGOLFIER, J., TERGNY, J., LARITCHEV, O., (1971), Linear Programming with Multiple Objective Functions: Step Method (STEM), Vol. 1 Num. 1, 366-375, Springer Berlin/Heidelberg      SHAPE \* MERGEFORMAT  Predrag osi, PhD, Full professor, FSB, University of Zagreb, Ivana Lu ia 5, Zagreb, Croatia, predrag.cosic@fsb.hr 2 Dragutin Lisjak, PhD, Asoc. professor, FSB, University of Zagreb, Ivana Lu ia 5, Zagreb, Croatia,  HYPERLINK "mailto:dragutin.lisjak@fsb.hr" d<=>?JK hrqqqqqql)gd $ ^`a$gdWp$`gd( pkd`$$IfTl6 t0644 layt^z|T ?Kxy !"$op!qrZ`gefq𹵹ᰤ𵉰wh[hJJnHtH h +h?GPh?GPh?GP6hYWnHtHhJJ h?GPh?GPhJJhJJ]nHtH h?GP6h?GP hWph?GP hWp6hb hWphWp h +hWphWphWp6]hWphWp6 hU+hhWphWph`5CJmH sH . df jlö{t{t{t h)h0Wh) h)h)hCJaJjAah1hH*U hH*jhH*UhjhUhU+hh CJOJQJ h CJh?GPh?GP6CJ hYWCJh +hYWCJhYWh +h?GPCJh?GP h +h?GP h?GP6). " $$Ifa$gd>Ag $$Ifa$gd>Ag$If $^`a$^`*,PR\t"ѻѻumbh>AghVmCJaJh"CJaJh>Agh){CJaJh>AghACJH*aJh>AghACJaJh){jahVmUh\hPSxhMICJaJhPSxCJH*aJ h)hMIh Uh(uhMI0JhMIjhMIU h)h)h)h)hPSxCJaJh)hPSxCJH*aJ!ragutin.lisjak@fsb.hr Valentina Latin, FSB, B.Sc., FSB, University of Zagreb, Ivana Lu ia 5, Zagreb, Croatia, valentina.latin@fsb.hr 34th INTERNATIONAL CONFERENCE ON PRODUCTION ENGINEERING 28. - 30. September 2011, Nia, Serbia University of Nia, Fa !#$%&'(/0ĹhU+hh CJOJQJh.hh\hPSxhPSxCJaJhw7hDMh){jXhVmUh>AghVmmHsHUhwoCJaJmHsHh>AghVmCJaJmHsHculty of Mechanical Engineering "#$%&'()*+,-.trpnppppppppkdX$$IflF%x t06    44 lal ./0 $^`a$< 0 0&P /R :pDM. A!"S#n$n% = 0&P /R :p-. A!"S#n$n% P 9 0&P /R :p-. A!"S#n$n% 9 0&P /R :p( . A!"S#n$n% = 0&P /R :p( . A!"S#n$n% P 9 0&P /R :p( . A!"S#n$n% = 0&P /R :p( . A!"S#n$n% P 9 0&P /R :p( . A!"S#n$n% = 0&P /R :p#/. A!"S#n$n% P B$$If!vh5%#v%:V 654B$$If!vh5%#v%:V 654B$$If!vh5%#v%:V 654$$Ifl!vh5% #v% :V l t0,5% /  / alyt^z|T$$Ifl!vh5% #v% :V l t0,5% / /  alyt^z|TQ$$Ifl!v h5555f5f5f5C55 5 G#v#v#v#vf#vC#v#v #v G:V l t0, 5555f5C55 5 F/ / alyt^z|T,kd($$IfTl   .<% fffCF t0((((44 lalyt^z|TQ$$Ifl!v h5555f5f5f5C55 5 G#v#v#v#vf#vC#v#v #v G:V l t0, 5555f5C55 5 F/ / alyt^z|T,kd$$IfTl   .<% fffCF t0((((44 lalyt^z|TQ$$Ifl!v h5555f5f5f5C55 5 G#v#v#v#vf#vC#v#v #v G:V l t0, 5555f5C55 5 F/ / alyt^z|T,kd* $$IfTl   .<% fffCF t0((((44 lalyt^z|To$$Ifl!v h5555f5f5f5C55 5 G#v#v#v#vf#vC#v#v #v G:V l4< t0)v ,,, , 5555f5C55 5 F/ / alf4yt^z|T2kd $$IfTl4<   .<%    f f f C  F t0((((44 lalf4yt^z|TQ$$Ifl!v h5555f5f5f5C55 5 G#v#v#v#vf#vC#v#v #v G:V l t0, 5555f5C55 5 F/ / alyt^z|T,kdP$$IfTl   .<% fffCF t0((((44 lalyt^z|T$$If!vh5?#v?:V l t06,5?ap yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|T$$If!vh5t5/525j #vt#v/#v2#vj :V l t06,5t5/525j ap(yt^z|TDd |b  c $A  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstvwxyz{|}~1Root EntryF Fp7Tz(Data uWordDocumentE&ObjectPoolHpQzp7Tz_1326124179FpQzpQzOle CompObjiObjInfo  !"#$%(+,-.1456789:=@ABCDGJKLORSTWZ[\]`cdehklmnoruvwxyz{~ FMathType 6.0 Equation MathType EFEquation.DSMT49q;:@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  maximizEquation Native V_1326124178 FpQzpQzOle CompObj ieZ(x 1 ,x 2 ,...,x n )==Z 1 (x 1 ,x 2 ,...,x n ),Z 2 (x 1 ,x 2 ,...,x n ),...,Z p (x 1 ,x 2 ,...,x n )[] FMathType 6.0 Equation MathType EFEquation.DSMT49q;ï@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APObjInfo Equation Native _1326123953FpQzpQzOle &G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  s.t.g i (x 1 ,x 2 ,...,x n )d"0,i==1,2,...,mx j e"0,j==1,2,...,n FMathType 6.0 Equation MathTyCompObj'iObjInfo)Equation Native *_1326123937' FpQzpQzpe EFEquation.DSMT49q;@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  MinlOle /CompObj0iObjInfo2Equation Native 3 FMathType 6.0 Equation MathType EFEquation.DSMT49q;ü@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  P k M k "-Z k x()[]"-ld"0,k==1,2...,p FMathType 6.0 Equation MathType EFEquation.DSMT49q;/@S|DSMT6WinAllBasicCodePages_1326123920FpQzpQzOle ;CompObj<iObjInfo>Equation Native ?K_1326123899"FpQzpQzOle ECompObj FiTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  x"F di le"0 FMathType 6.0 Equation MathType EFEquation.DSMT49qObjInfo!HEquation Native I_1326123865$FpQzpQzOle M;@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  F di FMathType 6.0 Equation MathType EFEquation.DSMT49qCompObj#%NiObjInfo&PEquation Native Q_13261238441)FpQzpQz;@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  l FMathType 6.0 Equation MathType EFEquation.DSMT49qOle UCompObj(*ViObjInfo+XEquation Native Y;@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  F d0 ==F d FMathType 6.0 Equation MathTy_1326123825.FpQzpQzOle ^CompObj-/_iObjInfo0ape EFEquation.DSMT49q;@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  p k FMathType 6.0 Equation MathTyEquation Native b_1326123808;,3FpQzpQzOle fCompObj24gipe EFEquation.DSMT49q;=@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  P k == a k pa k1k "ObjInfo5iEquation Native jY_13261237878FpQzpQzOle p FMathType 6.0 Equation MathType EFEquation.DSMT49q;@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  a k == CompObj79qiObjInfo:sEquation Native t_1326123762@6=FpQzpQzM k "-n k M k p(c jk ) 2j==1n " [] "- 12 FMathType 6.0 Equation MathType EFEquation.DSMT49qOle |CompObj<>}iObjInfo?Equation Native ;@S|DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  c jk FMathType 6.0 Equation MathType EFEquation.DSMT49q_1326008545BFpQzpQzOle CompObjACiObjInfoDEquation Native 1Table^SummaryInformation(GDocumentSummaryInformation8h@SDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  lOh+'0 $ D P \ ht| Ethan Frome EW/LN/CB? ?3"`?2OݯBB޹l+#`!#ݯBB޹l)`8@0xUMhA~3'nR`-m,(IAi6`$@%"nBv-VĒxՓB'=zTtEJfi"ټ3l% ("ÉD 5B+ ׂ䤽Ek~tP;&B7;{*,q&ҌVstli ٣ҭ_c 8wbY8ܮ{K2wOqnсۅ2wU;*?Yģ;5.7n#-y^5Y"UGwR{MY^i\A]D>B#"yG7g\^\ \H`[;4`!!ijꊒ3 YؓmXMH6="o`$q0I0i,5Y\}s`wggh>MO ,LDJYm, R>o..b0(:{U3J{EIIĒVu) 5*qy^1(`_r3[,J%Qs cQuy)nɴ68qQ+jibrNOYe2*p:Z'݄e"*A5G.eLd%10 {5+X )`p-pc+%x0 }MjЁ jWp8r[]ſ |5xmƂ",4<N-@Dd lb  c $A? ?3"`?2Lȧ9G('`! ȧ9GRAxUkAo6鶚փZlPڲMKi[H05nh65XEVQ x*^ DzONex~zqgǸ  }5Ӻ_KѦe ẅ EWJ-(2=[,d]D5V.f%l`M  )~&Yȇ,{ 41Ȣ.\OEH,K~I HASA%"xƧ02S4*RrRlh?htj_ =~2AX'jT՜MfUE*b&T-<>>l8$29E}nFP.^q;x4 3k]oS/̜|g.koN.K_1@ gM+U$U}[:i(:\bNOLy=Fa] ]~uDd |b  c $A? ?3"`?2=6T8%:)T.`!6T8%:)T@`d0xڕTMLA~ov[a[A%XH4@JH(m5mZˊMmk'//D'/&.=xċ1bPnKi7o^@xL4UU ga5;+̆Z,Nm`@p-\*YpǠCLeB<㨅=DJ7j< '+$GYZ ~qŗ4C,ՊH=dM~ 47΢v7!JOF99JXs,o@W[?7_ρpC,pC(\6&m8?͚k_;?+^HV'r8Rsʔ|&MɅEH$V :al;#˴Hk=!^Wv]O k;>,@P{A%]*~晷2LZ[7+z|׋D|||2 J:g17&_(<|!$|bWO!SٯvGFղ3DQ/Wc" Z $bN]oq&A|"HFLvjxC1 iN|']'':ģ} Maas*b&]2n[ҾnZG%m[c%Iܳw9`{ ?~#`UDd @b  c $A? ?3"`?2vQf + 2{[z{2`!svQf + 2{[z> AxڥSkAov|4m@Esh"XMF TD!**9jAxI0Ԃ:o73o~͛"`HM&imM 0R=Gߦ1=?Cnnۅ|&JB6,T3UVmBslPxiƺaL΋!  !&B;brݎAYRr^tTe-#|J9zd09˕Mg䮤i|I@_d+9GG&>J$ b"n}`H`~]{q6)*1#_DScߘ[nyB؝%\Mv7aW8;8}$Frmt_Dd @b  c $A? ?3"`?28Ciq\;f6`! Ciq\;f  xڥRMo@}NZFECEās]i9Y$\,RDqP $N咊__@*Q?+0CѼy3~8$@) \MTVپxGn-Nuґ|ԋe'+M(tA|]aSzIx8 db?Spx4d~L֟xo݊*RQ:9:q?GO='uyZL_BerFt]g)k$ڏv7qW޶M KFչ:(~;L;I?ܗ jűjF;<y>GrQ+:b2`ϭެq3 k/2/ͶF*7`7 xJB$ Jb^7a*_:#-.U E*i -,裺]_F;M&r#5b oL]Kgl6mDd b  c $A? ?3"`?2Iu-.M 9`!Iu-.MB@Rx5QoP9. A:u\5AY&KA!Kf:31"~$݋y龻w{ujp96"*ri].s]UR6\sQE;>zP'8օM T>bu 2 p^w>|:/8[x,afaos1{:)'`s@)zU^X,8y2pDDLs;ϧz /u&ec}}!Dd @b  c $A? ?3"`?2kzhsR{eQg9 G;`!?zhsR{eQg9 `P  xڥRoPiN("`h"M!"`KLbR2Q !@T5befEpvO{ww%@yO>JNZsmY.3#;x\[Z8ު12vȲVV١-=MB~)$TM\᎔f`!Ovϱ}@xuRAPyiV7[H.TXtfӸlACMCS9)({RQ <b/^hA0μfA'2M; `trX!eY*ǫؒ8W .:`BA7O%@v=%SEw59M0:*^X&Slx*nyk߫ѵt'qN>9wWܳ_p#swam\]޷ÍOnխ@7M5Cا{KfvtzLzs=魁:#ף,y-D2w *{ÇXvG~xKnPXF_O"|tt=$d/SX 74i}I] [_u(Ph 0HڳjpVz_3ўX`Ux>O >p0չ: oΓuDd [b   c $A ? ?3"`? 2QQuVMKʡ?A`!QQuVMKʡ?` SxڵT͋@o&iit.+B"]-naES9"H go{q^E4zP$i "d:7{yyp|l! ZӁ-L"䶸 3t>ν2P g`)@f}ް H`پes }S)Gq!2*I%~/?%irѩiRuH[_jkruW$n(ϭN˒2_?Mh;}k#UU7mu7u1} 2װ1-?/[:mUjbyQ֨Bi0~jhZڰJmFմ!&,FcbymmP( -GseMwhϝex!sW^̐sʛnϳpm-\~k~y"I z ONafvX9$"FP.^q;x4 3k]oS/̜|g.koN.K_1@ gM+U$U}[:i(:\bNOLy=Fa] ]~uDd  b   c $A ? ?3"`? 2\>*=y٪+P4|uH`!\>*=y٪+P4| xoxڵVKSQst۴BHpnSCV k]mN"#}%? |驇KPI"F%\s|wE0JyYj&U]lt^WTWbc72#"b:1 y"(c3Re@$wHՅꌥq ip]L]OM.! lv'}9^r\mn3d0Mʚok9l?e&``݄{3, x'XV*ovJq'BOeMKܛcsD~8I hts#^PO-tTVU%QYc/r A^NTǪނ-Hb֣=Z*rY{|bD21qX Dw}w#,1GPOMDe<(%i9e4vҗ%dOc1'r,(6вx08֓pvؕ-Gփ^׏f~>.N 6oݒ*RɀorcOZ{=hG\yqq9.p/ZA(@޲Gbh? #0pzOdߓ1ٱF+>ux=rQ-4ږ|8`ϭ~nsӳ߮]e|t1rc7]ұؿb`zuMge apT(2+|t`ťRHI1t:zn)_o%Pv1QZ+Vm~]7髌Y$$If!vh59#v9:V  t9,594 yt^z|T$$If!vh555#v#v#v:V 4 t9+,555/ 4 yt^z|T"$$If!v h5555U55555 Q5 Q#v#v#v#vU#v#v#v#v#v Q:V 4 t9+, 5555U55555 Q/ 4 yt^z|T$$If!v h5555U55555 Q5 Q#v#v#v#vU#v#v#v#v#v Q:V  t9, 5555U55555 Q/ 4 yt^z|T$$If!v h5555U55555 Q5 Q#v#v#v#vU#v#v#v#v#v Q:V  t9, 5555U55555 Q/ 4 yt^z|T$$If!v h5555U55555 Q5 Q#v#v#v#vU#v#v#v#v#v Q:V ! t9, 5555U55555 Q/ 4 yt^z|T$$If!v h5555U55555 Q5 Q#v#v#v#vU#v#v#v#v#v Q:V  t9, 5555U55555 Q/ 4 yt^z|T$$If!v h5555U55555 Q5 Q#v#v#v#vU#v#v#v#v#v Q:V  t9, 5555U55555 Q/ 4 yt^z|T$$If!v h5555U55555 Q5 Q#v#v#v#vU#v#v#v#v#v Q:V ! t9, 5555U55555 Q/ 4 yt^z|T$$If!v h5555U55555 Q5 Q#v#v#v#vU#v#v#v#v#v Q:V  t9, 5555U55555 Q/ 4 yt^z|Th$$Ifl!vh5#v:V l t65/ alyt^z|TDd b  c $A ? ?3"`? 2}c]xPm>q1Z`!}c]xPm>qB@Hx5QMo@} u#IPAC-B縎" n$Kk)q8(*z ??=!_̝sf7f}vf<UPdD9"\.5ڢ֚͜"3I.9{KU>*˟Ҫƺ&$}\e[qsN{6x1Gg~N#6kzPyw8߃{tП|7O̜LmwctmQ݂IX3fgTy'^qd+ڗ)Jf'}, JP2K?|5X]Thvp2X`Zc? ֏_=dAv3[소W"j^L=^-lAg Q X{łS JaAOў9*32|-cxa~h$$Ifl!vh5#v:V l t65/ alyt^z|T$$If!vh5#v:V l t065/  / ayt^z|TDd b  c $A ? ?3"`?2}c]xPm>q^`!}c]xPm>qB@Hx5QMo@} u#IPAC-B縎" n$Kk)q8(*z ??=!_̝sf7f}vf<UPdD9"\.5ڢ֚͜"3I.9{KU>*˟Ҫƺ&$}\e[qsN{6x1Gg~N#6kzPyw8߃{tП|7O̜LmwctmQ݂IX3fgTy'^qd+ڗ)Jf'}, JP2K?|5X]Thvp2X`Zc? ֏_=dAv3[소W"j^L=^-lAg Q X{łS JaAOў9*32|-cxa~$$If!vh5#v:V l t065/ /  ayt^z|TDdeD  3 @@"?GDdF  C "A MF-1"FRkJ4Fb@=FRkJ4TIIFx]ŲꞴ]r db*Aѷ("J2 DK, AQ ((H悊egwحyW~ _q?wUuuOWO9gIp%8 R'DBvm:%a"3늧 [xC%ZC u8b  P͈hD$i +z!'Yi_+/BnR ߏuB!Bᥤ)ǵCאũ4d/YSdt\ptՠփTMy\ǃV8_իW|W6SztRxZ1k"GŊnlHbEDjV,OkZ}>j;լQiLwGSo2#qYfmLӼkrǷqG.5iMIk5kԬ̼>^x׽tbg$Wf$ouOk~;q4u;s)4VB*f4DcϾwaE}xkhj*Y~+[M1H!vo=gnu{C8}-Py{P] LbmWj8$nWê{*!@8"BpF@f~$XBdO&e ?_;oC8}QpSK6%]2 .}JVs*l?vDyf6]'X X^uJA㻒UY*9 ;A-E!Ps5_ 'sŝfj}X9*ls@a90' We!~(p8!P)w*!y/B9=s@ as@ {{]9vpC8|=x1n·FA~,>gǸUmv?[ >iA9`]8iS{snT>Ȯ*gQIr}"yd;$bk̅evq./nqƎ! ,+\gILw' WCx,r~ҹ}v&uΨXfZcߣ؏v#~^[mvg믖#Xx5NT#,=E'a,[ٞb*^nWޣpq>cS*%YY ĚYX߻ݚ[|^fF WbUYߪ֋D=eeux3 +aE{]>h5խdY_bkU#+leE`+c`y_Y{?: 7%س!Xj9^2aUV31~g͙l%ˆSYV{d߸$bX ѐ 5 |5?(OH߷ٍ}o>d"g z/gAyIKvyCϻz]x0U3F#lG H*xQ۳GYa#f^w <ش֧o'r [CBIRR ǚMOBDf"^nvR_E{hmV㺵zs!>_>x W qGA2O"~eo>#'jɸ,b-<4Jۼn=]7qd/~.2§,"*XS[E4EAz~? ϓyA-=(_kpM`.} u@4`CihZDQWMT~HTuRդu,mg߳jWU R~d/0h?x`5bZ-H*1cykP5d}oB~cdxeO uDnhf{ۍo!Z$&^W[DMm MX;Dx@a/$ ϵiQ=g\17? s9%-:rj!;Z #2RyWYĚ9Z_6XS? Mw}y5_5cĖ;zE(%Tt,.,1_)n<:#{]ڸ.(=2U,W3qġ2eV7aMdyz_V{aoa~xTX@VIJ4e,McyU)Q>Ds_?~JXP><ȍ5yc'^bk,hzFv$-b@c4^OeUsYX%t-z>AWk4 GMʾGQ(yM4 ^Hf/L;FmN^"cOxYnK:߄e_6lj%O =9~1 <=į]o/"֯MD/ [ {zׄ :?Ϡwk-Spy?- hOh#Z_+ĕGM%zl) 5B3lG[#>u_IzI6geSjٜQmٞb`/ְZb=@e:|hOOhG<5Y5k$pQ*ON&7eZHO$pq̍Et:>Sʅd~.F[VPfq>t,dȧdpI~eGy.YW^?Bz?Eƨl.O+g>+W?gC܊@n}}ze_tum'9[sj95lFqP'ȟ^Cm-_A&A`s27~^?ح ?JC8? 2UUzP S\qe,ͥUwɲ,% Bwfo_I$}Oi;l<:@i?^9AD;`~m6oŹ~ӻ6^Z _O';L;]i'.Sa- rUY9ՂrՒR dɕ,~{=#~\NM 3b3 BWNh,ܙqZi1⿔]/w\CG^*$c%\~"2<Iau\R<   \<d:Ȱ sk>kT) 8^Sy<ĥ*oR s{Z9\a9\s1܊@nө ;8O>"r~D0nz f~J);}z\) #waWk/M=PO! ?D=!z'os{p'mD0ރ==u~!N|w8d|+_OlMɶ_z-AW#+!~֑-)VtIdD+e؛|oصLLY-36hguBLяi:&] Ѯ>!zwd[POǣ}H7dHk֯seK줼z7vIr%wh,G7s'a2ר8.Cb>>*uI`?*?tXd_{E1bg^A/sOZk 5kLV1Og*k}K&:}oCszgE{qs\ҙ/>Awk #bKeQ\&jTK太;f+㉹2UX^AU)\x*lxj!Vѐ,>1^vutR ,W%Y^ UTXeayQFuY\˻$'&ӳdF:/s)?8kTBSYwiҪ+ +{~#ÏǵzQq} OۤWcIyB`߂#Cj(Ƨ]|R?};3M.t kF?pbqx@މOi .|yInnڎW2/>/sw#>󳾟:s ۙ?&NH',.* O8xkONuϜ$ʨ,"TVEu5 Wω ˟ʁ5|ܯ? 4ρZnEvb }< .l ԞAf`9y~?lLyO8SiUX4 tQ kmQ/ďOu8'BL{ͷPmQPk#pT0rkoAAp(ST˛j jLVIßKTFZ˛1!@eS멼 =7׈[W` 20gOKx^"{O ÷@FbQg^OPYxuXW?n7OSߣf7OSkD7uT,GjXV[X2H:?bvf@VοS5ϩ\˭ȩN vLJN̘FN?}bT_|DT߷{SNss0`ތC5&o^Vh7Ժ Q=p0'ׅ†'XY9Y+kA筌ؒ[pmjTXrqmEY)UC5ϞQ僸譊FN{ǧKC8]RXWP~{WU!wk+*(7qp s 5P3Oj8Ca^1'E!~U) .Xd1"5*}^>Bg&hklMfg T4%2Zsm+1~/įwE#Hc^l ~.߈CWCB췳7a5!^FBgyYt45ď.n|2SM!@+CG4| US^5$Qbil `ψ߿?g49[ۉRّ9>3g5X͵M9[E<*rcO߅ |!ԛz+sG\)|N.{i`a!"2܃\~Ώ3NZ OcΣS^(L::k{P~@ ~;#.Fg35/;0׾ X 9xI(_ koK !F{6mBڿ1ڊXm gbdIֱ .IcvH%IXzacs !lgAdf ̰F=ӑ#1 ݄<ؼN5㑇3dA6B|Ρ^cF;^{ CTR RZK{aKs57%ZnEvb 5oO%wEoޑFf+4"w~Fߔf`.7}h4َIv`z" tT،TB̨gb=2հ ײ-zT۾j? ѐN  A=:'1xQ ~_[t5pٯcwO=Ds;[w{]\!qc >'@&zf,CO"lO( <3T蟊u{,ۮh1~_zPE_)5Sg[X7qƞ,Zs8v}Ү7բFto/Eu!޵׉aί;^%FއeY+Aڻ{?C?n|bO ݬo;;X^O{j'.o!/[5'C}>/^<Ԏ 663P;3+vF2hn/u\\( #=1b}V1p\<5Fq4s1Xc~Fߴh1n,s"CW  yxko1pM !DMSݏ{EN~ #@vΦ^9XpNB쵭"ǹ(OMY2~3`1 9?{]NXҴ۾7Jsao;NB!qcC(?l#,v^+o!ڐ~d/W 3~>zC?{{w( >֞&g6YE۹ .>^xmNj-@VRoj5OQGi!wf:G3'ct*{ \eaKsV.m'r;M%wEO#wc2"= s΃~Fhg?<ѮoE";-yS܁\-PyklՎ!(J>"&]u?oѢ5ɿw Dͦ/lQ2u:ױ߻ s ɯ楲(M(40}"snfnFffLn4nN)9hS;4iIV,o2N_94΋͹niwy,?iH}:ߩ亁_͈ <F!9i@㠟막3!$17 s'i?38) 9Ɏ119$>v>1#:8c$2 xg`ݳ$Xc`l|R0g9%v89-l f윁emr.MMx * ѐz,n:(tp,#v^teqι{q7`=W?^1UǕTȵS :=HՔx) ItŴY3=7͜9ǫ׮igsߐvb }yl*k*im}Wf?d6/@?/m&#$Ƒfr sm[X~õyȇCQ%4wJ n馓]{ڹgk0_-cn9]ܟ;tpx$qayܟh{ƺ;?ߠ~q+h)fǻ;ro|/%?_R=w5)w3Źۃv6ioJ\Caq?b"*y:.?R0g.w.uQ9xT{xs!qG~/^'yˆӭwR8xuX^1>@GGQӈO -s~rk az׮SF4}󠿹ao6_R0gC%MI7}$V4mK}:./NOw( @p'~L=]HŁПmrVw0.mswݾƽ}5 1sqvn:ߩW,'Z?{LMIޓ ^C5{ZM']C'܏O7}>ne>cw@>y_n ԛzo$ p˦8NESě%^͔U ]uɲ76{1^;9k#ygxDfx߆5lȈO"x `{)js@C {͵*!qZ'c=tsybo>t̀cс?'/cޚ^3;RwBv^B[Ro\n˭B=ۼ2ɛ'ysCxsz!y}mBïa3Zy*z]_njcNyKGmð}"=t%U޾abHzzjT^zWAMVy%u/'Y<ɶOr]?S蟟vǍq|\JqL\~gҩQT|A"@Z*u szZk,dOk7nnr+nڎmT*kX>v|D~?cݴv{cf1Fo2p=ܘWhԗ옭\LpO%oћ[%5>ƪH5{iHibz^W_ w9b-oG_zY1j6k7Am&$V)ɍjD5ayQObQߕ,Umģ^;s)*UcEبTըfT~ 7ۯ9zvw]UŲ#9If`!3" $)H m 8&p1w.G;}*g;g`Ih? 7xѮdz#G릟SfgGcG`"5{AH=>35]sp\Mg#n52UNrzJ +|U`ß O؋`ή˴Oo=J eYڊ x&M8.ScNu&)rB[T!vŜCU,ްSxWbVw5w nGc։1 C6g*v?rukbb6=![p)|7PyYDTOAUg]Xj |4q?s!ߴΉѐ Y$xߺ!&[zSbZ<2<2m:p&O`nLɿ[*-!''go< ^V性'%뗀ʵBV%zת"AjՄ\x43#nHco_T3%[;eOk;ˣf$kQ# 5p( Xp|XeWk쁟^OT%[p؟b5NEEj/k:պɗ`Sk6մ[=e5+Y@)7ΚV_ 0y9FuHh} Պ࿌Ճ_*[_ }]nn/mv2=z1 koUKnkU5m y:/?@*5A"* x]G?*+`nMfy@e k"eY𩂷|b];d+o׵Ds<FSob l^$skgW2lL tx!zaA</x{7;7vzP5j_<6E#K+eu{}lb-3 F0翡}N>k ^W*WϻO < ]8bV`3_ې~9)NЯ K؄ew'FB y~ _6Ge+ 1f&{ cyB;vV=?Dx]D0c} O9x?>@SSa_tͷU T} [fYjNo-me>dZT&vJ_k{9`/g߳?#7`žI-YVh TTbOd2<#6BS]?.X#eXYvinbAtOQG+W|< Xs\=TcJ-9T(C!u0*NNW֟rN2s;11 yG8Ws8oR32B8 T 43bQ0⠟-s~n}mf<}/z3/zc?x<qgzH?wjxyJqz͜Y'At+~ ؏7g \79tq"9zs-x:)3<~!>=.D~j8G(9@e|PIqTNX94IJ^ny:85w!`]yy9T&PEݱf;*Վ _|8.5޴ h(sޏ~LJp&Si]~i ^I;c3xyx /?~z>5xDK!9wzř?46m#™*ino!kPTTu> x&UuvS=g/`u9js}' ?ى*&T;Xo;렳z>Dե?ߚ^>fF$k-wǡ"}؜J[mo. 6Q N+ eh_@ٗBkTLjOy T<~U6^tQ3ȩF`Gе3pN 5n&!|-N:|8/ʦJ%n\sP:{'[Owlp׈1g(*~\sEO?QIUv/ JtoRYOJp%я8KBZ}@o ){{ջ!:b9ol:yQY^}e;ϫb9mr۪K*z]B <6$~[1j;ZuG~W}%d;[!zs*2ڛQS~=Wp]v¸tvֵY~jvtcw{᫃uD{J7 ^'A;P5v}UyJq놿n.5EiH8UA{55Hgg UmρG݇{백{W{k^jnjW kܓ=M]W/< BajI8i7 /\ݵUW7S0_z+2_]x[H wsaYfTtއP3\K:5ϽG >XO |Ǹn_| #o{6mh߉9؃9|?=ޥ/ [Noa\af@Mps1n~5-OWעr7"o}V7~_0φUkXs-{j{#UUoT Sߟ:_*:@U@8҇kR[>xbWz`sq!!>qO uy 6ݠlٱ|0g7wzPG=ޟl%JzyJ =u,^M+ jNe] ex~\_ϋrv[A8׼ߩwr댸uHurq3e+C^g^/^_:r g ?xDDL}T7WYIj*U= W]}ڬ^IPϫ W!OCVø7cu& 5[sq}Z$Ң* ڱ|2JN]>Kq}Db!1 ] C%FRiEKOz\͠wk.`o:\^=ū}%u^D.لty{һJ~RYY;E׼BNBϟ>ǀ6qsH=t[&$b"OzBdĊC+B[q*B8k[zMܧ輣>pk(PAq>rT,.zYMeQ8GA # kCO!Ud)ʨ:$HTEV@?w #_úԟbg N"œ,eb]A:UUZM^]>^D%%gOKr628,~Jd:P~Uȡ' %f#3OyQ]" B3B |a/m"W K-?͆!SD5GUsCp, jI>kpp=ZJ8D~PTS:᯶opU"|Oɢ( |=ak ;b9-+MEixZ> .xO"@8h){Ya_ϊ'v%YW? <8:kx jqQܠmsvKٯ"ïKg**WG\K:$&z[⛍vV#?QP7.2.W2Ϊ-g%/5OWc7J}y6e B Ք P֩?0_Tޤ:W2?gzTBNrF7!ތ>W wLe_? `_?/f%D߁Sbv"}Cvb /R벓D/l -1Me >fģ!Q)` ,.sS?ٰLQ8s9LfA2Kd~( z0) zdQ(Kl__[5pdFZ!%-6o|$r恅O92IL^{SES|m?>C8S9S*ˬD@:ϻCC3.@#ԒT0 8w7 $1lNdK'+#[л51ʚt,SQp҈K <?:q<-Z_?: ӓ:T Q1hrS%P*]NAyXq?`}}{$f= 僯|l:R^ tQV-쵢boT6hD@>@!k8qDպ\Yu魇 xlF\w16_J |ShM61M8 ?8uϦ 9 '&nW6_3zil0,':iYM] /K?ù~>`T븣qjKcKE |nݳTw7@: )ܭ'o$ }c븃 MbrOxgWgx8CN³v`W/{1V˜'1MkZ/ӆrbYKxI'1~Rb:mS3v\} }Xx.AVo,bzp=|&ף}B:-ӭ~q!6pmt嵍͸[~ 쯁}}:񎅬"8%C?I:? ǀS |"0?^ܭ}oNz_b9z})7nuLX8Id*7#qbCO\cyvG]te<$b=k#q:kڒ? |T G`VgAWTOfo}NkcuDPנmү'orhƳ+qo1>/^ \)?~ -!1Exj/TiSaDL$3@' D Dds--F  C "A PM-4Rfce$ExDV;IBF:ce$ExDV;IExifII*1J2fizACD Systems Digital Imaging2011:02:01 12:51:540220437^]R980100]^!       w ! "12AQ#a3Rb 5BqCr ?3}iYixl? $SvKeE7]%-D^Y's^⺫Wd6nBXJ^Ҽ^V[yRh7K¢px޹a4TM6y>bśŐ9ع9 _#ᴅ{P\X/Z!gGJYi"<1#ϠA_6n7OBVspQɩ2wx.#[mS`E2Y5_r>^C}Knbkm[XmP j4t$}R/E葏d[ 1u ּu u6&$] t^˩N.OQjl52xYd E#E3x 3Yo%=QڋOdZ}RKy\a?'!L.!ffzV ʡV5a*IW56j+-dgI0B#L7`cWxAM[0ES}*vjK݅@~O_Jm~Ȟ{z.9p+rheBox(UE{/v߭؎d&Oض, W8@`q XtG  HwEz i@epQ`mriإjr2e"7dWM*Ϯ\KRcc4yUEx,gɈn׷\ZݦP6vB@UdT5ul)lE|L:@ࢪ!{Q~ۈxaX +HΨ6 EEEU}'l RV^]LG:}p9g2ď$c~kUdAEȎbP-cOZ.7;jaY&~i"vR"(9WC4н @!õbs=ՠDrRUmjoB;wځzwYY(C֮4 s]_7]Ent.7|Tu_Ok-lXxg+rcMwQUDJ'?ၛ5g_>VrtŹ_>v8*M*lѮHL,|=ij <5HܒVӐDol6e%W=ֱSgp9҆G^F11%) 192ԐAyO4w>! Z4/ě y/h`bv̵JR\Ll IkbsiɷBmj@\m>DiEq"GK-);ZVV|oø`W:ښ5w;G#YˏZ3(K"r+R[OTMTn*+ӑݲuf b6 Phx=vbStTN|9W[9n=-v>QayYE@_+.}*䛒9uW[+(5Ӛˊn&*HT;:-eu7.y'qeE8TT_JΜBo[ag%֩c! UAR_ʭɳ%UeW;w] VܶuĜ+ՒeCVHEkyB_Uod^Z[gUK"hj+Y5"ěy,Ei\_ˊ_VsPzZ:lucOь>sk3-oc1^E`5RjT?Aɖ#/XT_A _07]"/#ony𰛣4 Kis{^ʠ| r/H%Elyl*N@wnyZ2dwf3DTE)NA_T_["oNq|G9~;fz tdQd"ÐBI!Tz_woiFeWw$'UΛeZS)$^q_'; %;pfH ƊVO+&IUL뼢],i6N.0lQUixԽpӿZEyđ{?>KI xl`*}QO۠㩿zWm\d_qU1]omItP[OhNj~8U=3* ́#aMq""mDOH . {d Fa]ٵWlˀٺ dh lU?&k:yDwb;|GR,2nւ<[)Tg'Uc6.<ɷ@;bePEF(,ƊbHX滮;t#OaZ{Fug%+GE+Ӣ/@ G-sGdaOʇaSq9HNxU?6_s$TN{kv5Gc)4Y_R2!}*M84Jڪj(c㘤.lj$iSU6ӆDE^h!QfWefzqy{IJ85N!yYtU\sbn5ԭBAvX+nF?5M0Lo!4uTT.{;XrV0|< Ƃm)mO@v_~3 \˰+jpl^/.ϯA:St dDȚYYΛJEΏTO&.R [1EmW9&&WeyEQe^WC-8qIa 8)FU^InF2 6J15c ˮ^?}mƼ.6 +@SXǍݲGP:],9dUX<6FQ\|m7/CZa=it&[ J_*j}Fq^Dv{%]29S5n=3=㮶8q?d;6[~БQ:خêlJgY=dGIhd Hwؑ}Xs͢mTT$Qs"Eewe~+Qs ?,r&qt lEu-PʅO; ;; Lq7pSdG" nv髗kǭPw~$&U1ER0 x.?Hb@Rd< l"@HI:İ3G1\r LaT@jt%6ؠY*{ +,>9g~{hmV6JJH( nJ<-o5 /MrYfX-p( [WtEY{l헾S&=V2Bx9*9m+$LvE[?I슝".|G{\Z56r a eooJB d~!^{u0+:=?ʑF]O`g sV5+0=Քm5_瓨H+^oȫQ:)Bq{Cfuim EWeFW8+"3:O9,ĂY~U,q \%nD$0V+_eY[Pm*V6rQx/[u:sxE)Z;%`dP^di}<051hPVGӼ$>$˱ư:k:]~&@4!!|5$E""s- "p@8 Title$a$ CJOJQJ6U@6 Hyperlink >*B*ph66  Footnote Text@&!@ Footnote ReferenceH*HJ2H Subtitle$a$5\aJmH sH tHfC@Bf Body Text Indent$<<`a$CJaJmH sH tH<R< References mH$sH$tH$TSbT Body Text Indent 3hx^hCJaJjsj  Table Grid7:V0NN\ emailstyle17CJOJQJ^JaJo(ph4@4 Header  !4 @4 Footer  !\\PSxAutor $1$7$8$H$`a$CJaJmHnHsH u00PSxKo autorXX KR $77]7^7a$56CJmHnHsH uHH KR Char!56CJ_HmHnHsH tH uFOF DMAbstract$77]7^7a$6NoN~Author dCJ_HmHnHsH tH uZoZ~ Affiliation !d$6CJ_HmHnHsH tH uDO"D Y Paper Title "$a$5CJ(DO2D -Keywords#  x] ^ 5@OB@ %- Paragraph$$`a$CJDOQD $-Paragraph CharCJmH sH tH 4Oa4 - long_text1CJaJ@OAr@ #/Equation' X `ff) FAIM Section($d$h1$7$8$5:\mHnHtHuBOAB *?GP Reference)^`CJ8R8 )?GPReference CharCJPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]  E !9P= E$$>$}$$$2$m$$ VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVXXX[M ),V-4456X8:@ILLM?0'*,02CDEFGHJKLM^acijloL 29E) *4*[**** +6+e++++,N,},,g7yJJ$K%KGKHKkKlKKKKKKKKK$L%LM<".0()+-./13456789:;<=>?@ABINOPQRSTUVWXYZ[\]_`bhkqr2{""""""''''''''''((K(c(e((((,)D)F)_)w)y)))))*****;;;<<< EX::::::::::::::: $'/F[_X$  "_b${aw<*=b$F>}2$1 *=7'M-mp32$e۞m6̱ 2$V NJTf}2YL@ 0(  B S  ?(  ^  k3%3 3  "0?`  c $X99? k3%3TB  C D k3Al3 E%[&ru OLE_LINK1 EE E3't 4' 5'4 DDD EDDD E9*urn:schemas-microsoft-com:office:smarttagsplace8*urn:schemas-microsoft-com:office:smarttagsCityB*urn:schemas-microsoft-com:office:smarttagscountry-region  g ++,,L,X,y,z,},,,,,, - - -----!-$-+-.-7-:-C-F-P-S-[-k;l;s;t;{;|;;;;;;;;;;;;;;;;;;;<<<<<<< <#<%<b<c<g<p<u<<<<<<<<<<<<<<== = ==== =$=(=,=3=8=:=>=B=F=L=??AAABBBBBBBBBBBBCCCCaCeCCCCC,D1D2D8DDDDDEE E \ e ""`&f&L']'''(( ****+=,L,|,},,, - -_-a--..j0011>2}2x5|577k;;;+<b<<<<<L===??7AAAbBnBBBBBBBBBBgCpCDDEE E3333333333333333333333335DEK6AH K (&]c""b&f&7777,>.>2????-@.@k@x@vAwAAA$B,BBBBBBBBBBBBBBBBBBCCHCICICKCeDDDEE E35DEK6AH K (&]c""b&f&7777,>.>2????-@.@k@x@vAwAAA$B,BBBBBBBBBBBBBBBBBBCCHCICICKCeDEE EEd~LoT vȬ3, b@qo;,D"$8ǘ4@{P!L`2&2:acvOrgκ(e9kr,D< y hh^h`o(.^`o(.0^`0o(..0^`0o(...   ^ `o( .... @ @ ^@ `o( ..... `^``o( ...... x`x^x``o(....... HH^H`o(........h ^`hH.^`o(..808^8`0o(...808^8`0o(.... ^`o( ..... ^`o( ...... ^`o(....... `^``o(........ `^``o(.........h ^`hH.^`o(..808^8`0o(...808^8`0o(.... ^`o( ..... ^`o( ...... ^`o(....... `^``o(........ `^``o(.........#TT^T`56CJOJQJaJo(hH[] ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. hh^h`o(hH. P^`Po(hH.. ^`o(hH... x^`xo(hH.... ^`o(hH .....  X ^ `Xo(hH ......   ^ `o(hH.......  8^`8o(hH........  `^``o(hH.........#TT^T`56CJOJQJaJo(hH[] ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. hh^h`o(hH. P^`Po(hH.. ^`o(hH... x^`xo(hH.... ^`o(hH .....  X ^ `Xo(hH ......   ^ `o(hH.......  8^`8o(hH........  `^``o(hH......... hh^h`o(hH. P^`Po(hH.. ^`o(hH... x^`xo(hH.... ^`o(hH .....  X ^ `Xo(hH ......   ^ `o(hH.......  8^`8o(hH........  `^``o(hH.........h ^`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.h ^`hH.^`o(..808^8`0o(...808^8`0o(.... ^`o( ..... ^`o( ...... ^`o(....... `^``o(........ `^``o(......... hh^h`o(hH. P^`Po(hH.. ^`o(hH... x^`xo(hH.... ^`o(hH .....  X ^ `Xo(hH ......   ^ `o(hH.......  8^`8o(hH........  `^``o(hH.........h ^`hH.h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH. hh^h`o(hH. P^`Po(hH.. ^`o(hH... x^`xo(hH.... ^`o(hH .....  X ^ `Xo(hH ......   ^ `o(hH.......  8^`8o(hH........  `^``o(hH......... hh^h`OJQJo(vE< yLoT e9kr8;4@:acL`rgP3, b@"$         H        H                          ^]3( BJ"SqYW8/ $"AZ)v+%.#/w0w0-2w7]"8RD;{?JJDM,O?GP ZbZ ^a>AgU+hHnwoWpPSxi({){3t|^z|UillT(X~=( YMI0WVmo^ 3+)O;`)5Jv~o 9 bSH\=-v,H`aWC(#aYE)7-A6  X.BB@E mm&'-.0123=BCD E  @ " H@ 2 h@ : x@ > @ B @ @   @UnknownG* Times New Roman5Symbol3. * ArialerYU Times New RomanCourier New;WingdingsA BCambria Math#qhJJ+& 8"y 8"y!24dBB 3qHX?( 2!xx Ethan FromeEthanEW/LN/CB dell userD         CompObjy