Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 670423

Estimation of Production Time by Regression and Neural Networks


Ćosić, Predrag; Lisjak, Dragutin; Antolić, Dražen
Estimation of Production Time by Regression and Neural Networks // 3rdInternational Scientific Conference, Management of Technology - Step to Sustainable Production MOTSP2011, 8-10 June 2011, Bol, Island Brac, Croatia, Conference Proceedings / Ćosić, Predrag (ur.).
Zagreb: Printera Grupa, 2011. str. 243-250 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 670423 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Estimation of Production Time by Regression and Neural Networks

Autori
Ćosić, Predrag ; Lisjak, Dragutin ; Antolić, Dražen

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
3rdInternational Scientific Conference, Management of Technology - Step to Sustainable Production MOTSP2011, 8-10 June 2011, Bol, Island Brac, Croatia, Conference Proceedings / Ćosić, Predrag - Zagreb : Printera Grupa, 2011, 243-250

ISBN
978-953-7738-10-5

Skup
3rdInternational Scientific Conference, Management of Technology - Step to Sustainable Production MOTSP2011

Mjesto i datum
Bol, otok Brač, Hrvatska, 08.06.2011. - 10.06.2011

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
stepwise multiple linear regression; group technology; knowledge base; production time; neural networks; TCE

Sažetak
The estimation of production times will be the necessary future basis for cost estimation, cost reduction or TCE (Total Cost Estimation). An experienced process planner usually makes decisions based on comprehensive data without breaking it down into individual parameters. So, as the first phase it was necessary to establish a technological knowledge base, define features of the 2D drawing (independent variables), possible dependent variables, size and criteria for sample homogenization (principles of group technology) for carrying out analysis of variance and regression analysis. The second phase in the research was to investigate the possibility for easy automatic, direct finding and applying 3D features of an axial symmetric product to the regression model. The third phase in the research was to investigate the possibility for the application of neural networks in production time estimation and to compare the 224 results between the regression models and neural network models. The most important characteristic of our approach presented in this paper is estimation of production times using group technology, regression analysis and neural networks.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Projekti:
120-1521781-3116 - UTJECAJ PROCESA PROIZVODNJE NA KOMPETITIVNOST I ODRŽIVOST RAZVOJA (Ćosić, Predrag, MZOS ) ( CroRIS)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Dražen Antolić (autor)

Avatar Url Dragutin Lisjak (autor)

Avatar Url Predrag Ćosić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Ćosić, Predrag; Lisjak, Dragutin; Antolić, Dražen
Estimation of Production Time by Regression and Neural Networks // 3rdInternational Scientific Conference, Management of Technology - Step to Sustainable Production MOTSP2011, 8-10 June 2011, Bol, Island Brac, Croatia, Conference Proceedings / Ćosić, Predrag (ur.).
Zagreb: Printera Grupa, 2011. str. 243-250 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Ćosić, P., Lisjak, D. & Antolić, D. (2011) Estimation of Production Time by Regression and Neural Networks. U: Ćosić, P. (ur.)3rdInternational Scientific Conference, Management of Technology - Step to Sustainable Production MOTSP2011, 8-10 June 2011, Bol, Island Brac, Croatia, Conference Proceedings.
@article{article, author = {\'{C}osi\'{c}, Predrag and Lisjak, Dragutin and Antoli\'{c}, Dra\v{z}en}, editor = {\'{C}osi\'{c}, P.}, year = {2011}, pages = {243-250}, keywords = {stepwise multiple linear regression, group technology, knowledge base, production time, neural networks, TCE}, isbn = {978-953-7738-10-5}, title = {Estimation of Production Time by Regression and Neural Networks}, keyword = {stepwise multiple linear regression, group technology, knowledge base, production time, neural networks, TCE}, publisher = {Printera Grupa}, publisherplace = {Bol, otok Bra\v{c}, Hrvatska} }
@article{article, author = {\'{C}osi\'{c}, Predrag and Lisjak, Dragutin and Antoli\'{c}, Dra\v{z}en}, editor = {\'{C}osi\'{c}, P.}, year = {2011}, pages = {243-250}, keywords = {stepwise multiple linear regression, group technology, knowledge base, production time, neural networks, TCE}, isbn = {978-953-7738-10-5}, title = {Estimation of Production Time by Regression and Neural Networks}, keyword = {stepwise multiple linear regression, group technology, knowledge base, production time, neural networks, TCE}, publisher = {Printera Grupa}, publisherplace = {Bol, otok Bra\v{c}, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font