Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 665410

Lie-Group Integration Method for Constrained Multibody Systems in State Space


Terze, Zdravko; Mueller, Andreas; Zlatar, Dario
Lie-Group Integration Method for Constrained Multibody Systems in State Space // Multibody system dynamics, 34 (2015), 3; 275-305 doi:10.1007/s11044-014-9439-2 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 665410 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Lie-Group Integration Method for Constrained Multibody Systems in State Space

Autori
Terze, Zdravko ; Mueller, Andreas ; Zlatar, Dario

Izvornik
Multibody system dynamics (1384-5640) 34 (2015), 3; 275-305

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Lie-groups; Multibody Systems Dynamics; Numerical Integration Methods; DAE systems; Constraint Violation Stabilization; Munthe-Kaas Integration Algorithm; Special Orthogonal Group SO(3)

Sažetak
Coordinate-free Lie-group integration method of arbitrary (and possibly higher) order of accuracy for constrained multibody systems (MBS) is proposed in the paper. Mathematical model of MBS dynamics is shaped as DAE system of equations of index 1, while dynamics is evolving on the system state space modeled as a Lie-group. Since formulated integration algorithm operates directly on the system manifold via MBS elements’ angular velocities and rotational matrices, no local rotational coordinates are necessary and kinematical differential equations (that are prone to singularities in the case of 3-parameters-based local description of the rotational kinematics) are completely avoided. Basis of the integration procedure is the Munthe-Kaas algorithm for ODE integration on Lie-groups, which is reformulated and expanded to be applicable for the integration of constrained MBS in the DAE-index-1 form. In order to eliminate numerical constraint violation for generalized positions and velocities during the integration procedure, constraint stabilization projection method based on constrained least square minimization algorithm is introduced. Two numerical examples, heavy top dynamics and satellite with mounted 5-DOF manipulator, are presented. The proposed Lie-group DAE-index-1 integration scheme is easy-to-use for a MBS with kinematical constraints of general type and it is especially suitable for dynamics of mechanical systems with large 3D rotations where standard (vector space) formulations might be inefficient due to kinematical singularities (3-parameters-based rotational coordinates) or additional kinematical constraints (redundant quaternion formulations).

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Strojarstvo, Zrakoplovstvo, raketna i svemirska tehnika

Napomena
10.1007/s11044-014-9439-2



POVEZANOST RADA


Projekti:
120-1201829-1664 - Numeričke simulacijske procedure dinamike slijetanja elastičnog zrakoplova (Terze, Zdravko, MZOS ) ( CroRIS)

Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Dario Zlatar (autor)

Avatar Url Zdravko Terze (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Terze, Zdravko; Mueller, Andreas; Zlatar, Dario
Lie-Group Integration Method for Constrained Multibody Systems in State Space // Multibody system dynamics, 34 (2015), 3; 275-305 doi:10.1007/s11044-014-9439-2 (međunarodna recenzija, članak, znanstveni)
Terze, Z., Mueller, A. & Zlatar, D. (2015) Lie-Group Integration Method for Constrained Multibody Systems in State Space. Multibody system dynamics, 34 (3), 275-305 doi:10.1007/s11044-014-9439-2.
@article{article, author = {Terze, Zdravko and Mueller, Andreas and Zlatar, Dario}, year = {2015}, pages = {275-305}, DOI = {10.1007/s11044-014-9439-2}, keywords = {Lie-groups, Multibody Systems Dynamics, Numerical Integration Methods, DAE systems, Constraint Violation Stabilization, Munthe-Kaas Integration Algorithm, Special Orthogonal Group SO(3)}, journal = {Multibody system dynamics}, doi = {10.1007/s11044-014-9439-2}, volume = {34}, number = {3}, issn = {1384-5640}, title = {Lie-Group Integration Method for Constrained Multibody Systems in State Space}, keyword = {Lie-groups, Multibody Systems Dynamics, Numerical Integration Methods, DAE systems, Constraint Violation Stabilization, Munthe-Kaas Integration Algorithm, Special Orthogonal Group SO(3)} }
@article{article, author = {Terze, Zdravko and Mueller, Andreas and Zlatar, Dario}, year = {2015}, pages = {275-305}, DOI = {10.1007/s11044-014-9439-2}, keywords = {Lie-groups, Multibody Systems Dynamics, Numerical Integration Methods, DAE systems, Constraint Violation Stabilization, Munthe-Kaas Integration Algorithm, Special Orthogonal Group SO(3)}, journal = {Multibody system dynamics}, doi = {10.1007/s11044-014-9439-2}, volume = {34}, number = {3}, issn = {1384-5640}, title = {Lie-Group Integration Method for Constrained Multibody Systems in State Space}, keyword = {Lie-groups, Multibody Systems Dynamics, Numerical Integration Methods, DAE systems, Constraint Violation Stabilization, Munthe-Kaas Integration Algorithm, Special Orthogonal Group SO(3)} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font