Pregled bibliografske jedinice broj: 658582
Sigma*: Symbolic Learning of Input-Output Specifications
Sigma*: Symbolic Learning of Input-Output Specifications // Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'13), 2013 / Gicobazzi, Roberto ; Cousot Radhia (ur.).
New York (NY): The Association for Computing Machinery (ACM), 2012. str. 443-456 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 658582 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sigma*: Symbolic Learning of Input-Output Specifications
Autori
Botinčan, Matko ; Babić, Domagoj
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'13), 2013
/ Gicobazzi, Roberto ; Cousot Radhia - New York (NY) : The Association for Computing Machinery (ACM), 2012, 443-456
ISBN
978-1-4503-1832-7
Skup
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Rome, Italy — January 23 - 25, 2013.
Mjesto i datum
Rim, Italija, 23.01.2013. - 25.01.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Inductive learning ; Specification synthesis ; Behavioral properties ; Equivalence checking ; Stream programs ; Compiler optimization ; Parallelization
Sažetak
We present Sigma, a novel technique for learning symbolic models of software behavior. Sigma addresses the challenge of synthesizing models of software by using symbolic conjectures and abstraction. By combining dynamic symbolic execution to discover symbolic input-output steps of the programs and counterexample guided abstraction refinement to over-approximate program behavior, Sigma transforms arbitrary source representation of programs into faithful input-output models. We define a class of stream filters—programs that process streams of data items—for which Sigma converges to a complete model if abstraction refinement eventually builds up a sufficiently strong abstraction. In other words, Sigma is complete relative to abstraction. To represent inferred symbolic models, we use a variant of symbolic transducers that can be effectively composed and equivalence checked. Thus, Sigma enables fully automatic analysis of behavioral properties such as commutativity, reversibility and idempotence, which is useful for web sanitizer verification and stream programs compiler optimizations, as we show experimentally.We also show how models inferred by Sigma can boost performance of stream programs by parallelized code generation.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
MZOS-037-0362980-2774 - Distribuirani algoritmi za pronalaženje optimalnih putova u grafovima (Manger, Robert, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb