Pregled bibliografske jedinice broj: 657607
Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations
Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations // Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics / Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J. ; Van Frankenhuijsen, Machiel (ur.).
Providence (RI): American Mathematical Society (AMS), 2013. str. 325-343 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 657607 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations
Autori
Naito, Yuki ; Pašić, Mervan ; Tanaka, Satoshi ; Žubrinić, Darko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics
/ Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J. ; Van Frankenhuijsen, Machiel - Providence (RI) : American Mathematical Society (AMS), 2013, 325-343
ISBN
978-0-8218-9148-3
Skup
PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics
Mjesto i datum
Messina, Italija, 08.11.2011. - 11.11.2011
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
fractal oscillations; Minkowski measurable set; p-Laplacian; radially symmetric function
Sažetak
We consider radially symmetric solutions of $p$-Laplace differential equation $(1)$: $-\Delta_pu=f(|x|)|u|^{; ; p-2}; ; u$ in an annular domain ${; ; \rm \Omega}; ; _{; ; a, b}; ; $. Motivated by [7] and [12], we introduce and study the fractal oscillations near $|x|=b$ of all radially symmetric solutions of equation $(1)$. Precisely, for a given real number $s\in [N, N+1)$ we find some sufficient conditions on the coefficient $f(r)$ such that every radially symmetric nontrivial solution $u(x)$ of equation $(1)$ oscillates near $|x|=b$ and the box-dimension $\dim_B\Gamma (u)$ of the graph $\Gamma(u)$ and corresponding lower and upper $s$-dimensional Minkowski contents ${; ; \mathcal M}; ; _*^s(\Gamma(u))$ and ${; ; \mathcal M}; ; ^{; ; *s}; ; (\Gamma(u))$ satisfy: $\dim_B\Gamma(u)=s$ and $0<{; ; \mathcal M}; ; _*^s(\Gamma(u))\leq {; ; \mathcal M}; ; ^{; ; *s}; ; (\Gamma(u)) < \infty$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb