Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 657607

Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations


Naito, Yuki; Pašić, Mervan; Tanaka, Satoshi; Žubrinić, Darko
Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations // Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics / Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J. ; Van Frankenhuijsen, Machiel (ur.).
Providence (RI): American Mathematical Society (AMS), 2013. str. 325-343 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 657607 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations

Autori
Naito, Yuki ; Pašić, Mervan ; Tanaka, Satoshi ; Žubrinić, Darko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics / Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J. ; Van Frankenhuijsen, Machiel - Providence (RI) : American Mathematical Society (AMS), 2013, 325-343

ISBN
978-0-8218-9148-3

Skup
PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics

Mjesto i datum
Messina, Italija, 08.11.2011. - 11.11.2011

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
fractal oscillations; Minkowski measurable set; p-Laplacian; radially symmetric function

Sažetak
We consider radially symmetric solutions of $p$-Laplace differential equation $(1)$: $-\Delta_pu=f(|x|)|u|^{; ; p-2}; ; u$ in an annular domain ${; ; \rm \Omega}; ; _{; ; a, b}; ; $. Motivated by [7] and [12], we introduce and study the fractal oscillations near $|x|=b$ of all radially symmetric solutions of equation $(1)$. Precisely, for a given real number $s\in [N, N+1)$ we find some sufficient conditions on the coefficient $f(r)$ such that every radially symmetric nontrivial solution $u(x)$ of equation $(1)$ oscillates near $|x|=b$ and the box-dimension $\dim_B\Gamma (u)$ of the graph $\Gamma(u)$ and corresponding lower and upper $s$-dimensional Minkowski contents ${; ; \mathcal M}; ; _*^s(\Gamma(u))$ and ${; ; \mathcal M}; ; ^{; ; *s}; ; (\Gamma(u))$ satisfy: $\dim_B\Gamma(u)=s$ and $0<{; ; \mathcal M}; ; _*^s(\Gamma(u))\leq {; ; \mathcal M}; ; ^{; ; *s}; ; (\Gamma(u)) < \infty$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)

Avatar Url Mervan Pašić (autor)

Citiraj ovu publikaciju:

Naito, Yuki; Pašić, Mervan; Tanaka, Satoshi; Žubrinić, Darko
Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations // Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics / Carfi, David ; Lapidus, Michel L. ; Pearse, Erin P. J. ; Van Frankenhuijsen, Machiel (ur.).
Providence (RI): American Mathematical Society (AMS), 2013. str. 325-343 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Naito, Y., Pašić, M., Tanaka, S. & Žubrinić, D. (2013) Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations. U: Carfi, D., Lapidus, M., Pearse, E. & Van Frankenhuijsen, M. (ur.)Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics.
@article{article, author = {Naito, Yuki and Pa\v{s}i\'{c}, Mervan and Tanaka, Satoshi and \v{Z}ubrini\'{c}, Darko}, year = {2013}, pages = {325-343}, keywords = {fractal oscillations, Minkowski measurable set, p-Laplacian, radially symmetric function}, isbn = {978-0-8218-9148-3}, title = {Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations}, keyword = {fractal oscillations, Minkowski measurable set, p-Laplacian, radially symmetric function}, publisher = {American Mathematical Society (AMS)}, publisherplace = {Messina, Italija} }
@article{article, author = {Naito, Yuki and Pa\v{s}i\'{c}, Mervan and Tanaka, Satoshi and \v{Z}ubrini\'{c}, Darko}, year = {2013}, pages = {325-343}, keywords = {fractal oscillations, Minkowski measurable set, p-Laplacian, radially symmetric function}, isbn = {978-0-8218-9148-3}, title = {Fractal oscillations near the domain boundary of radially symmetric solutions of p-Laplace equations}, keyword = {fractal oscillations, Minkowski measurable set, p-Laplacian, radially symmetric function}, publisher = {American Mathematical Society (AMS)}, publisherplace = {Messina, Italija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font