Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 653413

Center-based $l_1$-clustering method


Sabo, Kristian
Center-based $l_1$-clustering method // International Journal of Applied Mathematics and Computer Science, 24 (2014), 1; 151-163 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 653413 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Center-based $l_1$-clustering method

Autori
Sabo, Kristian

Izvornik
International Journal of Applied Mathematics and Computer Science (1641-876X) 24 (2014), 1; 151-163

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
$l_1-$clustering; data mining; optimization; weighted median problem

Sažetak
In this paper, we consider the $l_1$-clustering problem for a data-points set $\mathcal{; ; ; A}; ; ; =\{; ; ; a^i\in\R^n\colon i=1, \dots, m\}; ; ; $ which should be partitioned into $k$ disjoint nonempty subsets $\pi_1, \dots, \pi_k$, $1\leq k\leq m$. In that case, the objective function does not have to be either convex or differentiable and generally it may have many local or global minima. Therefore, it becomes a complex global optimization problem. A method for searching for a locally optimal solution is proposed in the paper, convergence of the corresponding iterative process is proved and a corresponding algorithm is also given. The method is illustrated by and compared with some other clustering methods, especially with the $l_2-$clustering method, which is also known in literature as a smooth $k-$means method, on a few typical situations, such as the presence of outliers among the data and clustering of incomplete data. Numerical experiments show in this case that the proposed $l_1-$clustering algorithm is faster and gives significantly better results than the $l_2-$clustering algorithm.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
235-2352818-1034 - Nelinearni problemi procjene parametara u matematičkim modelima (Jukić, Dragan, MZOS ) ( CroRIS)

Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Kristian Sabo (autor)


Citiraj ovu publikaciju:

Sabo, Kristian
Center-based $l_1$-clustering method // International Journal of Applied Mathematics and Computer Science, 24 (2014), 1; 151-163 (međunarodna recenzija, članak, znanstveni)
Sabo, K. (2014) Center-based $l_1$-clustering method. International Journal of Applied Mathematics and Computer Science, 24 (1), 151-163.
@article{article, author = {Sabo, Kristian}, year = {2014}, pages = {151-163}, keywords = {$l\_1-$clustering, data mining, optimization, weighted median problem}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {24}, number = {1}, issn = {1641-876X}, title = {Center-based $l\_1$-clustering method}, keyword = {$l\_1-$clustering, data mining, optimization, weighted median problem} }
@article{article, author = {Sabo, Kristian}, year = {2014}, pages = {151-163}, keywords = {$l\_1-$clustering, data mining, optimization, weighted median problem}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {24}, number = {1}, issn = {1641-876X}, title = {Center-based $l\_1$-clustering method}, keyword = {$l\_1-$clustering, data mining, optimization, weighted median problem} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • SCI-EXP, SSCI i/ili A&HCI





Contrast
Increase Font
Decrease Font
Dyslexic Font