Pregled bibliografske jedinice broj: 651072
Data Clustering with Differential Evolution Incorporating Macromutations
Data Clustering with Differential Evolution Incorporating Macromutations // Lecture Notes in Computer Science, Vol. 8297, Part I, Proceedings of the 4th International Conference on Swarm, Evolutionary, and Memetic Computing / Panigrahi, B.K. ; Suganthan, P.N. ; Das, S. ; Dash S.S. (ur.).
Chennai, Indija: Springer, 2013. str. 158-169 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 651072 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Data Clustering with Differential Evolution Incorporating Macromutations
Autori
Martinović, Goran ; Bajer, Dražen
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Lecture Notes in Computer Science, Vol. 8297, Part I, Proceedings of the 4th International Conference on Swarm, Evolutionary, and Memetic Computing
/ Panigrahi, B.K. ; Suganthan, P.N. ; Das, S. ; Dash S.S. - : Springer, 2013, 158-169
ISBN
978-3-319-03752-3
Skup
Fourth International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2013
Mjesto i datum
Chennai, Indija, 19.12.2013. - 21.12.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Data clustering; Davies-Bouldin index; differential evolution; macromutations; representative points
Sažetak
Data clustering is one of the fundamental tools in data mining and requires the grouping of a dataset into a specified number of nonempty and disjoint subsets. Beside the usual partitional and hierarchical methods, evolutionary algorithms are employed for clustering as well. They are able to find good quality partitions of the dataset and successfully solve some of the shortcomings that the k-means, being one of the most popular partitional algorithms, exhibits. This paper proposes a differential evolution algorithm that includes macromutations as an additional exploration mechanism. The application probability and the intensity of the macromutations are dynamically adjusted during runtime. The proposed algorithm was compared to four variants of differential evolution and one particle swarm optimization algorithm. The experimental analysis conducted on a number of real datasets showed that the proposed algorithm is stable and manages to find high quality solutions.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
165-0362980-2002 - Postupci raspoređivanja u samoodrživim raspodijeljenim računalnim sustavima (Martinović, Goran, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek